Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gene Regul Mech ; 1864(2): 194607, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32712338

RESUMO

Gene expression, the decoding of DNA information into accessible instructions for protein synthesis, is a complex process in which multiple steps, including transcription, mRNA processing and mRNA export, are regulated by different factors. One of the first steps in this process involves chemical and structural changes in chromatin to allow transcription. For such changes to occur, histone tail and DNA epigenetic modifications foster the binding of transcription factors to promoter regions. The SAGA coactivator complex plays a crucial role in this process by mediating histone acetylation through Gcn5, and histone deubiquitination through Ubp8 enzymes. However, most SAGA subunits interact physically with other proteins beyond the SAGA complex. These interactions could represent SAGA-independent functions or a mechanism to widen SAGA multifunctionality. Among the different mechanisms to perform more than one function, protein moonlighting defines unrelated molecular activities for the same polypeptide sequence. Unlike pleiotropy, where a single gene can affect different phenotypes, moonlighting necessarily involves separate functions of a protein at the molecular level. In this review we describe in detail some of the alternative physical interactions of several SAGA subunits. In some cases, the alternative role constitutes a clear moonlighting function, whereas in most of them the lack of molecular evidence means that we can only define these interactions as promiscuous that require further work to verify if these are moonlighting functions.


Assuntos
Eucariotos/enzimologia , Regulação da Expressão Gênica/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Acetilação , Eucariotos/genética , Histonas/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Subunidades Proteicas/química , Proteínas de Saccharomyces cerevisiae/química , Transativadores/química , Transcrição Gênica/fisiologia , Ubiquitinação/fisiologia
2.
Epigenetics Chromatin ; 13(1): 46, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115507

RESUMO

BACKGROUND: Histone H2B deubiquitination is performed by numerous deubiquitinases in eukaryotic cells including Ubp8, the catalytic subunit of the tetrameric deubiquitination module (DUBm: Ubp8; Sus1; Sgf11; Sgf73) of the Spt-Ada-Gcn5 acetyltransferase (SAGA). Ubp8 is linked to the rest of SAGA through Sgf73 and is activated by the adaptors Sus1 and Sgf11. It is unknown if DUBm/Ubp8 might also work in a SAGA-independent manner. RESULTS: Here we report that a tetrameric DUBm is assembled independently of the SAGA-CORE components SPT7, ADA1 and SPT20. In the absence of SPT7, i.e., independent of the SAGA complex, Ubp8 and Sus1 are poorly recruited to SAGA-dependent genes and to chromatin. Notably, cells lacking Spt7 or Ada1, but not Spt20, show lower levels of nuclear Ubp8 than wild-type cells, suggesting a possible role for SAGA-CORE subunits in Ubp8 localization. Last, deletion of SPT7 leads to defects in Ubp8 deubiquitinase activity in in vivo and in vitro assays. CONCLUSIONS: Collectively, our studies show that the DUBm tetrameric structure can form without a complete intact SAGA-CORE complex and that it includes full-length Sgf73. However, subunits of this SAGA-CORE influence DUBm association with chromatin, its localization and its activity.


Assuntos
Endopeptidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ubiquitinação
3.
Sci Data ; 7(1): 69, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32109230

RESUMO

Gene expression is a biological process regulated at different molecular levels, including chromatin accessibility, transcription, and RNA maturation and transport. In addition, these regulatory mechanisms have strong links with cellular metabolism. Here we present a multi-omics dataset that captures different aspects of this multi-layered process in yeast. We obtained RNA-seq, metabolomics, and H4K12ac ChIP-seq data for wild-type and mip6Δ strains during a heat-shock time course. Mip6 is an RNA-binding protein that contributes to RNA export during environmental stress and is informative of the contribution of post-transcriptional regulation to control cellular adaptations to environmental changes. The experiment was performed in quadruplicate, and the different omics measurements were obtained from the same biological samples, which facilitates the integration and analysis of data using covariance-based methods. We validate our dataset by showing that ChIP-seq, RNA-seq and metabolomics signals recapitulate existing knowledge about the response of ribosomal genes and the contribution of trehalose metabolism to heat stress. Raw data, processed data and preprocessing scripts are made available.


Assuntos
Regulação Fúngica da Expressão Gênica , Resposta ao Choque Térmico , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Imunoprecipitação da Cromatina , Metabolômica , RNA , RNA-Seq , Trealose/metabolismo
4.
EMBO Rep ; 20(12): e47964, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31680439

RESUMO

RNA-binding proteins (RBPs) participate in all steps of gene expression, underscoring their potential as regulators of RNA homeostasis. We structurally and functionally characterize Mip6, a four-RNA recognition motif (RRM)-containing RBP, as a functional and physical interactor of the export factor Mex67. Mip6-RRM4 directly interacts with the ubiquitin-associated (UBA) domain of Mex67 through a loop containing tryptophan 442. Mip6 shuttles between the nucleus and the cytoplasm in a Mex67-dependent manner and concentrates in cytoplasmic foci under stress. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation experiments show preferential binding of Mip6 to mRNAs regulated by the stress-response Msn2/4 transcription factors. Consistent with this binding, MIP6 deletion affects their export and expression levels. Additionally, Mip6 interacts physically and/or functionally with proteins with a role in mRNA metabolism and transcription such as Rrp6, Xrn1, Sgf73, and Rpb1. These results reveal a novel role for Mip6 in the homeostasis of Msn2/4-dependent transcripts through its direct interaction with the Mex67 UBA domain.


Assuntos
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
EMBO Rep ; 19(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30249596

RESUMO

Monoubiquitination of histone H2B (to H2Bub1) is required for downstream events including histone H3 methylation, transcription, and mRNA export. The mechanisms and players regulating these events have not yet been completely delineated. Here, we show that the conserved Ran-binding protein Mog1 is required to sustain normal levels of H2Bub1 and H3K4me3 in Saccharomyces cerevisiae Mog1 is needed for gene body recruitment of Rad6, Bre1, and Rtf1 that are involved in H2B ubiquitination and genetically interacts with these factors. We provide evidence that the absence of MOG1 impacts on cellular processes such as transcription, DNA replication, and mRNA export, which are linked to H2Bub1. Importantly, the mRNA export defect in mog1Δ strains is exacerbated by the absence of factors that decrease H2Bub1 levels. Consistent with a role in sustaining H2Bub and H3K4me3 levels, Mog1 co-precipitates with components that participate in these modifications such as Bre1, Rtf1, and the COMPASS-associated factors Shg1 and Sdc1. These results reveal a novel role for Mog1 in H2B ubiquitination, transcription, and mRNA biogenesis.


Assuntos
Histonas/metabolismo , RNA Polimerase II/genética , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteína ran de Ligação ao GTP/metabolismo , Imunoprecipitação da Cromatina , Repressão Epigenética , Regulação Fúngica da Expressão Gênica , Histonas/genética , RNA Polimerase II/metabolismo , Transporte de RNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica , Ubiquitinação , Proteína ran de Ligação ao GTP/genética
6.
Curr Genet ; 64(3): 635-644, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29116388

RESUMO

Sus1 is a conserved protein involved in histone H2B de-ubiquitination and mRNA export from the nucleus in eukaryotes. Previous studies implicated Sus1 partners in genome integrity including telomere homeostasis. However, the implication of Sus1 in telomere maintenance remains largely unknown. In this study, we found that yeast Sus1 interacts physically and genetically with factors involved in telomere maintenance and its absence leads to elongated telomeres. Deletion of several of Sus1's partners also leads to longer telomeres. Our results rule out a direct role for Sus1 in recruiting telomerase subunits to telomeres. However, we observe that deletion of SUS1 leads to elongated telomeres even in the presence of mutations like sem1Δ, esc2Δ and rsc2Δ, which cause telomere shortening. We find that rsc2Δ (short telomeres) have reduced levels of mono-ubiquitinated histone H2B at lysine 123 (H2BK123ub1), whereas sus1Δ mutants or double-mutants sus1Δ rsc2Δ exhibit longer telomeres and higher H2BK123ub1 levels. These results suggest that Sus1 activity as a H2B de-ubiquitination modulator plays a role in negatively regulating telomere length. Our results provide solid evidence for a role of Sus1 in negatively regulating telomere length through the modulation of H2BK123 mono-ubiquitination and its interaction with the nuclear pore complex.


Assuntos
Cromossomos Fúngicos , Evolução Molecular , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Homeostase do Telômero , Replicação do DNA , Mutação , Telômero , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...