Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2184: 145-160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32808224

RESUMO

The posttranslational modifications (PTMs) ADP-ribosylation and phosphorylation are important regulators of cellular pathways, and while mass spectrometry (MS)-based methods for the study of protein phosphorylation are well developed, protein ADP-ribosylation methodologies are still in a rapidly developing stage. The method described in this chapter uses immobilized metal affinity chromatography (IMAC), a phosphoenrichment matrix, to enrich ADP-ribosylated peptides which have been cleaved down to their phosphoribose attachment sites by a phosphodiesterase, thus isolating the ADP-ribosylated and phosphorylated proteomes simultaneously. To achieve the robust, relative quantification of PTM-level changes we have incorporated dimethyl labeling, a straightforward and economical choice which can be used on lysate from any cell type, including primary tissue. The entire pipeline has been optimized to work in ADP-ribosylation-compatible buffers and with protease-laden lysate from macrophage cells.


Assuntos
ADP-Ribosilação/fisiologia , Adenosina Difosfato Ribose/metabolismo , Macrófagos/metabolismo , Fosforilação/fisiologia , Animais , Linhagem Celular , Humanos , Camundongos , Peptídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Células RAW 264.7 , Coelhos , Espectrometria de Massas em Tandem/métodos
2.
J Proteome Res ; 19(9): 3716-3731, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32529831

RESUMO

We have used mass spectrometry (MS) to characterize protein signaling in lipopolysaccharide (LPS)-stimulated macrophages from human blood, human THP1 cells, mouse bone marrow, and mouse Raw264.7 cells. Protein ADP-ribosylation was truncated down to phosphoribose, allowing for enrichment and identification of the resulting phosphoribosylated peptides alongside phosphopeptides. Size exclusion chromatography-MS (SEC-MS) was used to separate proteoforms by size; protein complexes were then identified by weighted correlation network analysis (WGCNA) based on their correlated movement into or out of SEC fractions following stimulation, presenting an analysis method for SEC-MS that does not rely on established databases. We highlight two modules of interest: one linked to the apoptosis signal-regulating kinase (ASK) signalosome and the other containing poly(ADP-ribose) polymerase 9 (PARP9). Finally, PARP inhibition was used to perturb the characterized systems, demonstrating the importance of ADP-ribosylation for the global interactome. All post-translational modification (PTM) and interactome data have been aggregated into a meta-database of 6729 proteins, with ADP-ribosylation characterized on 2905 proteins and phosphorylation characterized on 2669 proteins. This database-titled MAPCD, for Macrophage ADP-ribosylation, Phosphorylation, and Complex Dynamics-serves as an invaluable resource for studying crosstalk between the ADP-ribosylome, phosphoproteome, and interactome.


Assuntos
ADP-Ribosilação , Lipopolissacarídeos , Difosfato de Adenosina , Adenosina Difosfato Ribose/metabolismo , Animais , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Proteoma/genética , Proteoma/metabolismo
3.
mSystems ; 2(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085914

RESUMO

The bodies of mammals are hosts to vast microbial communities composed of trillions of bacteria from thousands of species, whose effects on health and development have begun to be appreciated only recently. In this investigation, an integrated analysis combining proteomics and transcriptomics was used to quantitatively compare the terminal ilia from conventional and germfree mice. Female and male mice responded similarly to the microbiota, but C57BL/10A mice responded more strongly than BALB/c mice at both the transcriptome and proteome levels. The microbiota primarily caused upregulation of immunological pathways and downregulation of metabolic pathways in the conventional mice. Many of the affected pathways were altered only at either the transcriptome or proteome level. Of the pathways that were affected at both levels, most were affected concordantly. The discordant pathways were not principally involved in the immune system but instead were related to metabolism, oxidative phosphorylation, protein translation, transport, and turnover. To broaden the discovery of affected host pathways, a meta-analysis was performed using intestinal transcriptomics data from previously published studies of germfree versus conventional mice with diverse microbiota populations. Similar transcript-level responses to the microbiota were found, and many additional affected host pathways were discovered. IMPORTANCE Multiple host pathways were affected by its adaptation to the microbiota. We have found significant transcriptome-proteome discordance caused by the microbiota. This discovery leads to the definite conclusion that transcript-level analysis is not sufficient to predict protein levels and their influence on the function of many specific cellular pathways, so only analysis of combinations of the quantitative data determined at different levels will lead to a complete understanding of the complex relationships between the host and the microbiota. Therefore, our results demonstrate the importance of using an integrative approach to study host-microbiota interaction at the molecular level.

4.
Epigenetics Chromatin ; 10: 17, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28396698

RESUMO

BACKGROUND: Posttranslational modifications of core histones are correlated with changes in transcriptional status, chromatin fiber folding, and nucleosome dynamics. However, within the centromere-specific histone H3 variant CENP-A, few modifications have been reported, and their functions remain largely unexplored. In this multidisciplinary report, we utilize in silico computational and in vivo approaches to dissect lysine 124 of human CENP-A, which was previously reported to be acetylated in advance of replication. RESULTS: Computational modeling demonstrates that acetylation of K124 causes tightening of the histone core and hinders accessibility to its C-terminus, which in turn diminishes CENP-C binding. Additionally, CENP-A K124ac/H4 K79ac containing nucleosomes are prone to DNA sliding. In vivo experiments using a CENP-A acetyl or unacetylatable mimic (K124Q and K124A, respectively) reveal alterations in CENP-C levels and a modest increase in mitotic errors. Furthermore, mutation of K124 results in alterations in centromeric replication timing. Purification of native CENP-A proteins followed by mass spectrometry analysis reveals that while CENP-A K124 is acetylated at G1/S, it switches to monomethylation during early S and mid-S phases. Finally, we provide evidence implicating the histone acetyltransferase (HAT) p300 in this cycle. CONCLUSIONS: Taken together, our data suggest that cyclical modifications within the CENP-A nucleosome contribute to the binding of key kinetochore proteins, the integrity of mitosis, and centromeric replication. These data support the paradigm that modifications in histone variants can influence key biological processes.


Assuntos
Proteína Centromérica A/metabolismo , Nucleossomos/metabolismo , Acetilação , Centrômero/metabolismo , Proteína Centromérica A/química , Cromatografia Líquida de Alta Pressão , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Fase G1 , Células HeLa , Histonas/química , Humanos , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Peptídeos/análise , Ligação Proteica , Fase S , Espectrometria de Massas em Tandem , Fatores de Transcrição de p300-CBP/metabolismo
5.
Biochem Biophys Res Commun ; 382(1): 30-4, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19245787

RESUMO

Trypanosoma cruzi is a parasite responsible for Chagas disease. The identification of new targets for chemotherapy is a major challenge for the control of this disease. Several lines of evidences suggest that the translational system in trypanosomatids show important differences compared to other eukaryotes. However, there little is known information about this. We have performed a detailed data mining search for ribosomal protein genes in T. cruzi genome data base combined with mass spectrometry analysis of purified T. cruzi ribosomes. Our results show that T. cruzi ribosomal proteins have approximately 50% sequence identity to yeast ones. Nevertheless, some parasite proteins are longer due to the presence of several N- or C-terminal extensions, which are exclusive of trypanosomatids. In particular, L19 and S21 show C-terminal extensions of 168 and 164 amino acids, respectively. In addition, we detected two 60S subunit proteins that had not been previously detected in the T. cruzi total proteome; namely, L22 and L42.


Assuntos
Proteínas Ribossômicas/metabolismo , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Proteômica , Proteínas Ribossômicas/genética , Trypanosoma cruzi/genética
6.
J Proteome Res ; 5(12): 3376-84, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17137339

RESUMO

Herein we detail the first glycoproteomic analysis of a human pathogen. We describe an approach that enables the identification of organelle and cell surface N-linked glycoproteins from Trypanosoma cruzi, the causative agent of Chagas' disease. This approach is based on a subcellular fractionation protocol to produce fractions enriched in either organelle or plasma membrane/cytoplasmic proteins. Through lectin affinity capture of the glycopeptides from each subcellular fraction and stable isotope labeling of the glycan attachment sites with H(2)18O, we unambiguously identified 36 glycosylation sites on 35 glycopeptides which mapped to 29 glycoproteins. We also present the first expression evidence for 11 T. cruzi specific glycoproteins and provide experimental data indicating that the mucin associated surface protein family (MASP) and dispersed gene family (DGF-1) are post-translationally modified by N-linked glycans.


Assuntos
Proteômica , Trypanosoma cruzi/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Sequência de Aminoácidos , Animais , Western Blotting , Fracionamento Celular , Cromatografia de Afinidade , Cromatografia Líquida , Biologia Computacional , Lectinas , Espectrometria de Massas , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...