Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Alzheimers Dis ; 97(4): 1793-1806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306050

RESUMO

Background: Some epidemiologic studies associate traumatic brain injury (TBI) with Alzheimer's disease (AD). Objective: To test whether a TBI-induced acceleration of age-related mitochondrial change could potentially mediate the reported TBI-AD association. Methods: We administered unilateral controlled cortical impact (CCI) or sham injuries to 5-month-old C57BL/6J and tau transgenic rTg4510 mice. In the non-transgenics, we assessed behavior (1-5 days, 1 month, and 15 months), lesion size (1 and 15 months), respiratory chain enzymes (1 and 15 months), and mitochondrial DNA copy number (mtDNAcn) (1 and 15 months) after CCI/sham. In the transgenics we quantified post-injury mtDNAcn and tangle burden. Results: In the non-transgenics CCI caused acute behavioral deficits that improved or resolved by 1-month post-injury. Protein-normalized complex I and cytochrome oxidase activities were not significantly altered at 1 or 15 months, although complex I activity in the CCI ipsilesional cortex declined during that period. Hippocampal mtDNAcn was not altered by injury at 1 month, increased with age, and rose to the greatest extent in the CCI contralesional hippocampus. In the injured then aged transgenics, the ipsilesional hippocampus contained less mtDNA and fewer tangles than the contralesional hippocampus; mtDNAcn and tangle counts did not correlate. Conclusions: As mice age their brains increase mtDNAcn as part of a compensatory response that preserves mitochondrial function, and TBI enhances this response. TBI may, therefore, increase the amount of compensation required to preserve late-life mitochondrial function. If TBI does modify AD risk, altering the trajectory or biology of aging-related mitochondrial changes could mediate the effect.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Camundongos , Animais , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Mitocôndrias/patologia , DNA Mitocondrial/genética , Camundongos Transgênicos , Modelos Animais de Doenças
2.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38265300

RESUMO

The rostral forelimb area (RFA) in the rat is a premotor cortical region based on its dense efferent projections to primary motor cortex. This study describes corticocortical connections of RFA and the relative strength of connections with other cortical areas. The goal was to provide a better understanding of the cortical network in which RFA participates, and thus, determine its function in sensorimotor behavior. The RFA of adult male Long-Evans rats (n = 6) was identified using intracortical microstimulation techniques and injected with the tract-tracer, biotinylated dextran amine (BDA). In post-mortem tissue, locations of BDA-labeled terminal boutons and neuronal somata were plotted and superimposed on cortical field boundaries. Quantitative estimates of terminal boutons in each region of interest were based on unbiased stereological methods. The results demonstrate that RFA has dense connections with primary motor cortex and frontal cortex medial and lateral to RFA. Moderate connections were found with insular cortex, primary somatosensory cortex (S1), the M1/S1 overlap zone, and lateral somatosensory areas. Cortical connections of RFA in rat are strikingly similar to cortical connections of the ventral premotor cortex in non-human primates, suggesting that these areas share similar functions and allow greater translation of rodent premotor cortex studies to primates.


Assuntos
Córtex Motor , Ratos , Masculino , Animais , Vias Neurais/fisiologia , Ratos Long-Evans , Córtex Motor/fisiologia , Membro Anterior/fisiologia , Primatas , Mapeamento Encefálico
3.
J Biophotonics ; 17(3): e202300347, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171947

RESUMO

Non-human primates (NHPs) are crucial models for studies of neuronal activity. Emerging photoacoustic imaging modalities offer excellent tools for studying NHP brains with high sensitivity and high spatial resolution. In this research, a photoacoustic microscopy (PAM) device was used to provide a label-free quantitative characterization of cerebral hemodynamic changes due to peripheral mechanical stimulation. A 5 × 5 mm area within the somatosensory cortex region of an adult squirrel monkey was imaged. A deep, fully connected neural network was characterized and applied to the PAM images of the cortex to enhance the vessel structures after mechanical stimulation on the forelimb digits. The quality of the PAM images was improved significantly with a neural network while preserving the hemodynamic responses. The functional responses to the mechanical stimulation were characterized based on the improved PAM images. This study demonstrates capability of PAM combined with machine learning for functional imaging of the NHP brain.


Assuntos
Técnicas Fotoacústicas , Animais , Saimiri , Técnicas Fotoacústicas/métodos , Microscopia/métodos , Hemodinâmica , Neurônios
5.
J Integr Neurosci ; 22(3): 71, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37258431

RESUMO

BACKGROUND: The purpose of this proof-of-concept feasibility study was to determine if spike-triggered intraspinal microstimulation (ISMS), a form of activity dependent stimulation (ADS), results in improved motor performance in an ambulatory rat model of spinal cord injury (SCI). METHODS: Experiments were carried out in adult male Sprague Dawley rats with moderate thoracic contusion injury. Rats were assigned to one of two groups: Control or ADS therapy. Four weeks post-SCI, all rats were implanted with a recording microelectrode in the left hindlimb motor cortex and a fine-wire stimulating electrode in the contralateral lumbar spinal cord. ADS was administered for 4 hours/day, 4 days/week, for 4 weeks. During therapy sessions, single-unit spikes were discriminated in real time in the hindlimb motor cortex and used to trigger stimulation in the spinal cord ventral horn. Control rats were similarly implanted with electrodes but did not receive stimulation therapy. RESULTS: Motor performances of each rat were evaluated before SCI contusion, once a week post-SCI for four weeks (prior to electrode implantation), and once a week post-conditioning for four weeks. Basso, Beattie, and Bresnahan (BBB) locomotor scores were significantly improved in ADS rats compared to Control rats at 1 and 2 weeks after initiation of therapy. Foot fault scores on the Horizontal Ladder were significantly improved in ADS rats compared to pre-therapy ADS and Control rats after 1 week of therapy and recovered to near pre-injury scores after 3 weeks of therapy. The Ledged Beam test showed deficits after SCI in both ADS and Control rats but there were no significant differences between groups after 4 weeks of ADS therapy. CONCLUSIONS: These results show that chronic stimulation after spinal cord injury using a methodology of spike-triggered ISMS enhances behavioral recovery of locomotor function as measured by the BBB score and the Horizontal Ladder task. However, it is still uncertain if the behavioral improvements seen were dependent on spike-triggered ISMS.


Assuntos
Contusões , Traumatismos da Medula Espinal , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/terapia , Medula Espinal/fisiologia
6.
J Neurosci ; 43(11): 2021-2032, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36788028

RESUMO

Recovery of motor function after stroke is accompanied by reorganization of movement representations in spared cortical motor regions. It is widely assumed that map reorganization parallels recovery, suggesting a causal relationship. We examined this assumption by measuring changes in motor representations in eight male and six female squirrel monkeys in the first few weeks after injury, a time when motor recovery is most rapid. Maps of movement representations were derived using intracortical microstimulation techniques in primary motor cortex (M1), ventral premotor cortex (PMv), and dorsal premotor cortex (PMd) in 14 adult squirrel monkeys before and after a focal infarct in the M1 distal forelimb area. Maps were derived at baseline and at either 2 (n = 7) or 3 weeks (n = 7) postinfarct. In PMv the forelimb maps remained unchanged at 2 weeks but contracted significantly (-42.4%) at 3 weeks. In PMd the forelimb maps expanded significantly (+110.6%) at 2 weeks but contracted significantly (-57.4%) at 3 weeks. Motor deficits were equivalent at both time points. These results highlight two features of plasticity after M1 lesions. First, significant contraction of distal forelimb motor maps in both PMv and PMd is evident by 3 weeks. Second, an unpredictable nonlinear pattern of reorganization occurs in the distal forelimb representation in PMd, first expanding at 2 weeks, and then contracting at 3 weeks postinjury. Together with previous results demonstrating reliable map expansions in PMv several weeks to months after M1 injury, the subacute time period may represent a critical window for the timing of therapeutic interventions.SIGNIFICANCE STATEMENT The relationship between motor recovery and motor map reorganization after cortical injury has rarely been examined in acute/subacute periods. In nonhuman primates, premotor maps were examined at 2 and 3 weeks after injury to primary motor cortex. Although maps are known to expand late after injury, the present study demonstrates early map expansion at 2 weeks (dorsal premotor cortex) followed by contraction at 3 weeks (dorsal and ventral premotor cortex). This nonlinear map reorganization during a time of gradual behavioral recovery suggests that the relationship between map plasticity and motor recovery is much more complex than previously thought. It also suggests that rehabilitative motor training may have its most potent effects during this early dynamic phase of map reorganization.


Assuntos
Córtex Motor , Acidente Vascular Cerebral , Animais , Feminino , Masculino , Córtex Motor/fisiologia , Saimiri , Acidente Vascular Cerebral/patologia , Movimento/fisiologia , Infarto/patologia
8.
Neurorehabil Neural Repair ; 37(6): 384-393, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36636754

RESUMO

BACKGROUND: After an acquired injury to the motor cortex, the ability to generate skilled movements is impaired, leading to long-term motor impairment and disability. While rehabilitative therapy can improve outcomes in some individuals, there are no treatments currently available that are able to fully restore lost function. OBJECTIVE: We previously used activity-dependent stimulation (ADS), initiated immediately after an injury, to drive motor recovery. The objective of this study was to determine if delayed application of ADS would still lead to recovery and if the recovery would persist after treatment was stopped. METHODS: Rats received a controlled cortical impact over primary motor cortex, microelectrode arrays were implanted in ipsilesional premotor and somatosensory areas, and a custom brain-machine interface was attached to perform the ADS. Stimulation was initiated either 1, 2, or 3 weeks after injury and delivered constantly over a 4-week period. An additional group was monitored for 8 weeks after terminating ADS to assess persistence of effect. Results were compared to rats receiving no stimulation. RESULTS: ADS was delayed up to 3 weeks from injury onset and still resulted in significant motor recovery, with maximal recovery occurring in the 1-week delay group. The improvements in motor performance persisted for at least 8 weeks following the end of treatment. CONCLUSIONS: ADS is an effective method to treat motor impairments following acquired brain injury in rats. This study demonstrates the clinical relevance of this technique as it could be initiated in the post-acute period and could be explanted/ceased once recovery has occurred.


Assuntos
Transtornos Motores , Masculino , Animais , Ratos , Fatores de Tempo , Transtornos Motores/etiologia , Transtornos Motores/terapia , Córtex Motor , Lesões Encefálicas Traumáticas/complicações , Recuperação de Função Fisiológica , Comportamento Animal , Terapia por Estimulação Elétrica
9.
J Neurosci Methods ; 384: 109767, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36493978

RESUMO

BACKGROUND: Cortical electrical stimulation is a versatile technique for examining the structure and function of cortical regions and for implementing novel therapies. While electrical stimulation has been used to examine the local spread of neural activity, it may also enable longitudinal examination of mesoscale interregional connectivity. NEW METHOD: Here, we sought to use intracortical microstimulation (ICMS) in conjunction with recordings of multi-unit action potentials to assess the mesoscale effective connectivity within sensorimotor cortex. Neural recordings were made from multielectrode arrays placed into sensory, motor, and premotor regions during surgical experiments in three squirrel monkeys. During each recording, single-pulse ICMS was repeatably delivered to a single region. Mesoscale effective connectivity was calculated from ICMS-evoked changes in multi-unit firing. RESULTS: Multi-unit action potentials were able to be detected on the order of 1 ms after each ICMS pulse. Across sensorimotor regions, short-latency (< 2.5 ms) ICMS-evoked neural activity strongly correlated with known anatomical connections. Additionally, ICMS-evoked responses remained stable across the experimental period, despite small changes in electrode locations and anesthetic state. COMPARISON WITH EXISTING METHODS: Previous imaging studies investigating cross-regional responses to stimulation are limited to utilizing indirect hemodynamic responses and thus lack the temporal specificity of ICMS-evoked responses. CONCLUSIONS: These results show that monitoring ICMS-evoked neural activity, in a technique we refer to as Stimulation-Evoked Effective Connectivity (SEEC), is a viable way to longitudinally assess effective connectivity, enabling studies comparing the time course of connectivity changes with the time course of changes in behavioral function.


Assuntos
Estimulação Elétrica , Estimulação Elétrica/métodos
15.
Neurorehabil Neural Repair ; 36(8): 514-524, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35559809

RESUMO

BACKGROUND: Physical use of the affected upper extremity can have a beneficial effect on motor recovery in people after stroke. Few studies have examined neurological mechanisms underlying the effects of forced use in non-human primates. In particular, the ventral premotor cortex (PMV) has been previously implicated in recovery after injury. OBJECTIVE: To examine changes in motor maps in PMV after a period of forced use following ischemic infarct in primary motor cortex (M1). METHODS: Intracortical microstimulation (ICMS) techniques were used to derive motor maps in PMV of four adult squirrel monkeys before and after an experimentally induced ischemic infarct in the M1 distal forelimb area (DFL) in the dominant hemisphere. Monkeys wore a sleeved jacket (generally 24 hrs/day) that forced limb use contralateral to the infarct in tasks requiring skilled digit use. No specific rehabilitative training was provided. RESULTS: At 3 mos post-infarct, ICMS maps revealed a significant expansion of the DFL representation in PMV relative to pre-infarct baseline (mean = +77.3%; n = 3). Regression analysis revealed that the magnitude of PMV changes was largely driven by M1 lesion size, with a modest effect of forced use. One additional monkey examined after ∼18 months of forced use demonstrated a 201.7% increase, unprecedented in non-human primate studies. CONCLUSIONS: Functional reorganization in PMV following an ischemic infarct in the M1 DFL is primarily driven by M1 lesion size. Additional expansion occurs in PMV with extremely long periods of forced use but such extended constraint is not considered clinically feasible.


Assuntos
Lesões Encefálicas , Córtex Motor , Animais , Mapeamento Encefálico , Membro Anterior/fisiologia , Humanos , Infarto
16.
Artigo em Inglês | MEDLINE | ID: mdl-35604961

RESUMO

Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode arrays were implanted in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) of anaesthetized rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. The lesion induced an acute depressive trend in LFP power in RFA (evaluated in 6 bands of interest: Delta (1-4Hz), Theta (4-8Hz), Alpha (8-11Hz), Beta (11-30Hz), LowGamma (30-55Hz) and HighGamma (55-80)) followed by a noticeable significant rebound in both areas. Applying ADS induced an overall decrease of power. The lesion impacted the connectivity in a frequency specific manner, resulting in widespread increase in connectivity in Delta both between and within areas. Two hours after the lesion, without stimulation, correlated activity between areas increased in Beta and Gamma. After stimulation, inter-area connectivity increased in Delta, Theta and Alpha, while considerably dropping within RFA in highGamma. By computing phase-amplitude coupling, we found that the lesion produced an incremental increase in the coupling between (Theta) Alpha phase and (lowGamma) highGamma amplitude within RFA, while S1 had a more generalized increase. Likewise, coupling between Theta phase and lowGamma/highGamma amplitudes increased between areas after lesion. ADS induced a similar increase, but greater in magnitude both within and between RFA and S1. These results have important implications on the emerging field of closed-loop adaptive stimulation promoting ADS as an innovative tool for the treatment of neurological disorders.


Assuntos
Encéfalo , Membro Anterior , Animais , Membro Anterior/fisiologia , Humanos , Microeletrodos , Ratos
17.
Restor Neurol Neurosci ; 40(1): 17-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213336

RESUMO

BACKGROUND: Closed-loop neuromodulation systems have received increased attention in recent years as potential therapeutic approaches for treating neurological injury and disease. OBJECTIVE: The purpose of this study was to assess the ability of intraspinal microstimulation (ISMS), triggered by action potentials (spikes) recorded in motor cortex, to alter synaptic efficacy in descending motor pathways in an anesthetized rat model of spinal cord injury (SCI). METHODS: Experiments were carried out in adult, male, Sprague Dawley rats with a moderate contusion injury at T8. For activity-dependent stimulation (ADS) sessions, a recording microelectrode was used to detect neuronal spikes in motor cortex that triggered ISMS in the spinal cord grey matter. SCI rats were randomly assigned to one of four experimental groups differing by: a) cortical spike-ISMS stimulus delay (10 or 25 ms) and b) number of ISMS pulses (1 or 3). Four weeks after SCI, ADS sessions were conducted in three consecutive 1-hour conditioning bouts for a total of 3 hours. At the end of each conditioning bout, changes in synaptic efficacy were assessed using intracortical microstimulation (ICMS) to examine the number of spikes evoked in spinal cord neurons during 5-minute test bouts. A multichannel microelectrode recording array was used to record cortically-evoked spike activity from multiple layers of the spinal cord. RESULTS: The results showed that ADS resulted in an increase in cortically-evoked spikes in spinal cord neurons at specific combinations of spike-ISMS delays and numbers of pulses. Efficacy in descending motor pathways was increased throughout all dorsoventral depths of the hindlimb spinal cord. CONCLUSIONS: These results show that after an SCI, ADS can increase synaptic efficacy in spared pathways between motor cortex and spinal cord. This study provides further support for the potential of ADS therapy as an effective method for enhancing descending motor control after SCI.


Assuntos
Contusões , Córtex Motor , Traumatismos da Medula Espinal , Animais , Masculino , Córtex Motor/fisiologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/terapia
18.
Bioelectron Med ; 8(1): 4, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35220964

RESUMO

BACKGROUND: Acquired brain injuries, such as stroke, are a major cause of long-term disability worldwide. Intracortical microstimulation (ICMS) can be used successfully to assist in guiding appropriate connections to restore lost sensorimotor integration. Activity-Dependent Stimulation (ADS) is a specific type of closed-loop ICMS that aims at coupling the activity of two different brain regions by stimulating one in response to activity in the other. Recently, ADS was used to effectively promote behavioral recovery in rodent models following a unilateral traumatic brain injury in the primary motor cortex. While behavioral benefits have been described, the neurophysiological changes in spared areas in response to this type of stimulation have not been fully characterized. Here we explored how single-unit spiking activity is impacted by a focal ischemic lesion and, subsequently, by an ADS treatment. METHODS: Intracortical microelectrode arrays were implanted in the ipsilesional rostral forelimb area (RFA) to record spike activity and to trigger intracortical microstimulation in the primary somatosensory area (S1) of anaesthetized Long Evans rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. Activity from both RFA and S1 was recorded and analyzed off-line by evaluating possible changes, either induced by the lesion in the Control group or by stimulation in the ADS group. RESULTS: We found that the ischemic lesion in the motor area led to an overall increase in spike activity within RFA and a decrease in S1 with respect to the baseline condition. Subsequent treatment with ADS increased the firing rate in both RFA and S1. Post-stimulation spiking activity was significantly higher compared to pre-stimulation activity in the ADS animals versus non-stimulated controls. Moreover, stimulation promoted the generation of highly synchronized bursting patterns in both RFA and S1 only in the ADS group. CONCLUSIONS: This study describes the impact on single-unit activity in ipsilesional areas immediately following a cortical infarct and demonstrates that application of ADS is effective in altering this activity.

19.
Photoacoustics ; 25: 100326, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35028289

RESUMO

The investigation of neuronal activity in non-human primate models is of critical importance due to their genetic similarity to human brains. In this study, we tested the feasibility of using photoacoustic imaging for the detection of cortical and subcortical responses due to peripheral electrical stimulation in a squirrel monkey model. Photoacoustic computed tomography and photoacoustic microscopy were applied on squirrel monkeys for real-time deep subcortical imaging and optical-resolution cortical imaging, respectively. The electrically evoked hemodynamic changes in primary somatosensory cortex, premotor cortices, primary motor cortex, and underlying subcortical areas were measured. Hemodynamic responses were observed in both cortical and subcortical brain areas at the cortices during external stimulation, demonstrating the feasibility of photoacoustic technique for functional imaging of non-human primate brain.

20.
J Neurosci Methods ; 361: 109283, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237383

RESUMO

BACKGROUND: Technological advances in developing experimentally controlled models of traumatic brain injury (TBI) are prevalent in rodent models and these models have proven invaluable in characterizing temporal changes in brain and behavior after trauma. To date no long-term studies in non-human primates (NHPs) have been published using an experimentally controlled impact device to follow behavioral performance over time. NEW METHOD: We have employed a controlled cortical impact (CCI) device to create a focal contusion to the hand area in primary motor cortex (M1) of three New World monkeys to characterize changes in reach and grasp function assessed for 3 months after the injury. RESULTS: The CCI destroyed most of M1 hand representation reducing grey matter by 9.6 mm3, 12.9 mm3, and 15.5 mm3 and underlying corona radiata by 7.4 mm3, 6.9 mm3, and 5.6 mm3 respectively. Impaired motor function was confined to the hand contralateral to the injury. Gross hand-use was only mildly affected during the first few days of observation after injury while activity requiring skilled use of the hand was impaired over three months. COMPARISON WITH EXISTING METHOD(S): This study is unique in establishing a CCI model of TBI in an NHP resulting in persistent impairments in motor function evident in volitional use of the hand. CONCLUSIONS: Establishing an NHP model of TBI is essential to extend current rodent models to the complex neural architecture of the primate brain. Moving forward this model can be used to investigate novel therapeutic interventions to improve or restore impaired motor function after trauma.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Córtex Motor , Animais , Modelos Animais de Doenças , Força da Mão , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...