Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(14): 144305, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37061488

RESUMO

While the dissociative recombination (DR) of ground-state molecular ions with low-energy free electrons is generally known to be exothermic, it has been predicted to be endothermic for a class of transition-metal oxide ions. To understand this unusual case, the electron recombination of titanium oxide ions (TiO+) with electrons has been experimentally investigated using the Cryogenic Storage Ring. In its low radiation field, the TiO+ ions relax internally to low rotational excitation (≲100 K). Under controlled collision energies down to ∼2 meV within the merged electron and ion beam configuration, fragment imaging has been applied to determine the kinetic energy released to Ti and O neutral reaction products. Detailed analysis of the fragment imaging data considering the reactant and product excitation channels reveals an endothermicity for the TiO+ dissociative electron recombination of (+4 ± 10) meV. This result improves the accuracy of the energy balance by a factor of 7 compared to that found indirectly from hitherto known molecular properties. Conversely, the present endothermicity yields improved dissociation energy values for D0(TiO) = (6.824 ± 0.010) eV and D0(TiO+) = (6.832 ± 0.010) eV. All thermochemistry values were compared to new coupled-cluster calculations and found to be in good agreement. Moreover, absolute rate coefficients for the electron recombination of rotationally relaxed ions have been measured, yielding an upper limit of 1 × 10-7 cm3 s-1 for typical conditions of cold astrophysical media. Strong variation of the DR rate with the TiO+ internal excitation is predicted. Furthermore, potential energy curves for TiO+ and TiO have been calculated using a multi-reference configuration interaction method to constrain quantum-dynamical paths driving the observed TiO+ electron recombination.

2.
Rev Sci Instrum ; 93(6): 063302, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777995

RESUMO

For sensitive studies of molecular ions in electrostatic storage rings, the exact knowledge of the isobaric composition of stored beams from a variety of ion sources is essential. Conventional mass-filtering techniques are often inefficient to resolve the beam components. Here, we report the first isochronous mass spectrometry in an electrostatic storage ring, which offers a high mass resolution of Δm/m < 1 × 10-5 even for heavy molecular species with m > 100 u and uncooled ion beams. Mass contaminations can be resolved and identified at relative fractions down to 0.02%.

3.
Science ; 365(6454): 676-679, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31320559

RESUMO

The epoch of first star formation in the early Universe was dominated by simple atomic and molecular species consisting mainly of two elements: hydrogen and helium. Gaining insight into this constitutive era requires a thorough understanding of molecular reactivity under primordial conditions. We used a cryogenic ion storage ring combined with a merged electron beam to measure state-specific rate coefficients of dissociative recombination, a process by which electrons destroy molecular ions. We found a pronounced decrease of the electron recombination rates for the lowest rotational states of the helium hydride ion (HeH+), compared with previous measurements at room temperature. The reduced destruction of cold HeH+ translates into an enhanced abundance of this primordial molecule at redshifts of first star and galaxy formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...