Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 9: 77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034715

RESUMO

BACKGROUND: Microbial lipids are produced by many oleaginous organisms including the well-characterized yeast Yarrowia lipolytica, which can be engineered for increased lipid yield by up-regulation of the lipid biosynthetic pathway and down-regulation or deletion of competing pathways. RESULTS: We describe a strain engineering strategy centered on diacylglycerol acyltransferase (DGA) gene overexpression that applied combinatorial screening of overexpression and deletion genetic targets to construct a high lipid producing yeast biocatalyst. The resulting strain, NS432, combines overexpression of a heterologous DGA1 enzyme from Rhodosporidium toruloides, a heterlogous DGA2 enzyme from Claviceps purpurea, and deletion of the native TGL3 lipase regulator. These three genetic modifications, selected for their effect on lipid production, enabled a 77 % lipid content and 0.21 g lipid per g glucose yield in batch fermentation. In fed-batch glucose fermentation NS432 produced 85 g/L lipid at a productivity of 0.73 g/L/h. CONCLUSIONS: The yields, productivities, and titers reported in this study may further support the applied goal of cost-effective, large -scale microbial lipid production for use as biofuels and biochemicals.

2.
Sci Rep ; 4: 4246, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24604015

RESUMO

The modification-dependent restriction endonuclease AspBHI recognizes 5-methylcytosine (5mC) in the double-strand DNA sequence context of (C/T)(C/G)(5mC)N(C/G) (N = any nucleotide) and cleaves the two strands a fixed distance (N12/N16) 3' to the modified cytosine. We determined the crystal structure of the homo-tetrameric AspBHI. Each subunit of the protein comprises two domains: an N-terminal DNA-recognition domain and a C-terminal DNA cleavage domain. The N-terminal domain is structurally similar to the eukaryotic SET and RING-associated (SRA) domain, which is known to bind to a hemi-methylated CpG dinucleotide. The C-terminal domain is structurally similar to classic Type II restriction enzymes and contains the endonuclease catalytic-site motif of DX20EAK. To understand how specific amino acids affect AspBHI recognition preference, we generated a homology model of the AspBHI-DNA complex, and probed the importance of individual amino acids by mutagenesis. Ser41 and Arg42 are predicted to be located in the DNA minor groove 5' to the modified cytosine. Substitution of Ser41 with alanine (S41A) and cysteine (S41C) resulted in mutants with altered cleavage activity. All 19 Arg42 variants resulted in loss of endonuclease activity.


Assuntos
Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Mutagênese , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , DNA/química , Ativação Enzimática , Variação Genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Alinhamento de Sequência , Especificidade por Substrato
3.
J Bacteriol ; 194(1): 49-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22037402

RESUMO

The genomes of two Bacillus cereus strains (ATCC 10987 and ATCC 14579) have been sequenced. Here, we report the specificities of type II/III restriction (R) and modification (M) enzymes. Found in the ATCC 10987 strain, BceSI is a restriction endonuclease (REase) with the recognition and cut site CGAAG 24-25/27-28. BceSII is an isoschizomer of AvaII (G/GWCC). BceSIII cleaves at ACGGC 12/14. The BceSIII C terminus resembles the catalytic domains of AlwI, MlyI, and Nt.BstNBI. BceSIV is composed of two subunits and cleaves on both sides of GCWGC. BceSIV activity is strongly stimulated by the addition of cofactor ATP or GTP. The large subunit (R1) of BceSIV contains conserved motifs of NTPases and DNA helicases. The R1 subunit has no endonuclease activity by itself; it strongly stimulates REase activity when in complex with the R2 subunit. BceSIV was demonstrated to hydrolyze GTP and ATP in vitro. BceSIV is similar to CglI (GCSGC), and homologs of R1 are found in 11 sequenced bacterial genomes, where they are paired with specificity subunits. In addition, homologs of the BceSIV R1-R2 fusion are found in many sequenced microbial genomes. An orphan methylase, M.BceSV, was found to modify GCNGC, GGCC, CCGG, GGNNCC, and GCGC sites. A ParB-methylase fusion protein appears to nick DNA nonspecifically. The ATCC 14579 genome encodes an active enzyme Bce14579I (GCWGC). BceSIV and Bce14579I belong to the phospholipase D (PLD) family of endonucleases that are widely distributed among Bacteria and Archaea. A survey of type II and III restriction-modification (R-M) system genes is presented from sequenced B. cereus, Bacillus anthracis, and Bacillus thuringiensis strains.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo III/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bacillus cereus/classificação , Bacillus cereus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo III/genética , Regulação Enzimológica da Expressão Gênica , Genoma Bacteriano , Guanosina Trifosfato/metabolismo , Dados de Sequência Molecular , Subunidades Proteicas
4.
BMC Genomics ; 11: 59, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20096118

RESUMO

BACKGROUND: Histone acetyltransferase enzymes (HATs) are implicated in regulation of transcription. HATs from different families may overlap in target and substrate specificity. RESULTS: We isolated the elp3+ gene encoding the histone acetyltransferase subunit of the Elongator complex in fission yeast and characterized the phenotype of an Deltaelp3 mutant. We examined genetic interactions between Deltaelp3 and two other HAT mutants, Deltamst2 and Deltagcn5 and used whole genome microarray analysis to analyze their effects on gene expression. CONCLUSIONS: Comparison of phenotypes and expression profiles in single, double and triple mutants indicate that these HAT enzymes have overlapping functions. Consistent with this, overlapping specificity in histone H3 acetylation is observed. However, there is no evidence for overlap with another HAT enzyme, encoded by the essential mst1+ gene.


Assuntos
Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Histona Acetiltransferases/genética , Schizosaccharomyces/genética , Acetilação , Regulação Fúngica da Expressão Gênica , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Fúngico/genética , Schizosaccharomyces/enzimologia
5.
Genetics ; 179(2): 757-71, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18505873

RESUMO

Schizosaccharomyces pombe Mst1 is a member of the MYST family of histone acetyltransferases and is the likely ortholog of Saccharomyces cerevisiae Esa1 and human Tip60 (KAT5). We have isolated a temperature-sensitive allele of this essential gene. mst1 cells show a pleiotropic phenotype at the restrictive temperature. They are sensitive to a variety of DNA-damaging agents and to the spindle poison thiabendazole. mst1 has an increased frequency of Rad22 repair foci, suggesting endogenous damage. Two-hybrid results show that Mst1 interacts with a number of proteins involved in chromosome integrity and centromere function, including the methyltransferase Skb1, the recombination mediator Rad22 (Sc Rad52), the chromatin assembly factor Hip1 (Sc Hir1), and the Msc1 protein related to a family of histone demethylases. mst1 mutant sensitivity to hydroxyurea suggests a defect in recovery following HU arrest. We conclude that Mst1 plays essential roles in maintenance of genome stability and recovery from DNA damage.


Assuntos
Histona Acetiltransferases/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Alelos , Sequência de Bases , Cromossomos Fúngicos/genética , Dano ao DNA/genética , Primers do DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , DNA Fúngico/genética , Genes Fúngicos , Instabilidade Genômica , Heterocromatina/genética , Hidroxiureia/farmacologia , Mitose/genética , Mutação , Fenótipo , Recombinação Genética , Schizosaccharomyces/citologia , Schizosaccharomyces/efeitos dos fármacos , Temperatura , Técnicas do Sistema de Duplo-Híbrido
6.
RNA ; 12(6): 1023-37, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16618965

RESUMO

RNase P and RNase MRP are ribonucleoprotein enzymes required for 5'-end maturation of precursor tRNAs (pre-tRNAs) and processing of precursor ribosomal RNAs, respectively. In yeast, RNase P and MRP holoenzymes have eight protein subunits in common, with Pop1p being the largest at >100 kDa. Little is known about the functions of Pop1p, beyond the fact that it binds specifically to the RNase P RNA subunit, RPR1 RNA. In this study, we refined the previous Pop1 phylogenetic sequence alignment and found four conserved regions. Highly conserved amino acids in yeast Pop1p were mutagenized by randomization and conditionally defective mutations were obtained. Effects of the Pop1p mutations on pre-tRNA processing, pre-rRNA processing, and stability of the RNA subunits of RNase P and MRP were examined. In most cases, functional defects in RNase P and RNase MRP in vivo were consistent with assembly defects of the holoenzymes, although moderate kinetic defects in RNase P were also observed. Most mutations affected both pre-tRNA and pre-rRNA processing, but a few mutations preferentially interfered with only RNase P or only RNase MRP. In addition, one temperature-sensitive mutation had no effect on either tRNA or rRNA processing, consistent with an additional role for RNase P, RNase MRP, or Pop1p in some other form. This study shows that the Pop1p subunit plays multiple roles in the assembly and function of of RNases P and MRP, and that the functions can be differentiated through the mutations in conserved residues.


Assuntos
Endorribonucleases/metabolismo , Processamento Pós-Transcricional do RNA , Ribonuclease P/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência Conservada/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/genética , Cinética , Modelos Genéticos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Fenótipo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico 5,8S/genética , RNA Ribossômico 5,8S/metabolismo , Ribonuclease P/genética , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA