Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19273, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37935710

RESUMO

Virgibacillus salarius 19.PP.SC1.6 is a coral symbiont isolated from Indonesia's North Java Sea; it has the ability to produce secondary metabolites that provide survival advantages and biological functions, such as ectoine, which is synthesized by an ectoine gene cluster. Apart from being an osmoprotectant for bacteria, ectoine is also known as a chemical chaperone with numerous biological activities such as maintaining protein stability, which makes ectoine in high demand in the market industry and makes it beneficial to investigate V. salarius ectoine. However, there has been no research on genome-based secondary metabolite and ectoine gene cluster characterization from Indonesian marine V. salarius. In this study, we performed a genomic analysis and ectoine identification of V. salarius. A high-quality draft genome with total size of 4.45 Mb and 4426 coding sequence (CDS) was characterized and then mapped into the Cluster of Orthologous Groups (COG) category. The genus Virgibacillus has an "open" pangenome type with total of 18 genomic islands inside the V. salarius 19.PP.SC1.6 genome. There were seven clusters of secondary metabolite-producing genes found, with a total of 80 genes classified as NRPS, PKS (type III), terpenes, and ectoine biosynthetic related genes. The ectoine gene cluster forms one operon consists of ectABC gene with 2190 bp gene cluster length, and is successfully characterized. The presence of ectoine in V. salarius was confirmed using UPLC-MS/MS operated in Multiple Reaction Monitoring (MRM) mode, which indicates that V. salarius has an intact ectoine gene clusters and is capable of producing ectoine as compatible solutes.


Assuntos
Diamino Aminoácidos , Virgibacillus , Virgibacillus/genética , Indonésia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Família Multigênica , Diamino Aminoácidos/metabolismo
2.
Life (Basel) ; 13(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37109545

RESUMO

The heterogeneity of the lung microbiome and its alteration are prevalently seen among chronic lung diseases patients. However, studies to date have primarily focused on the bacterial microbiome in the lung rather than fungal composition, which might play an essential role in the mechanisms of several chronic lung diseases. It is now well established that Aspergillus spp. colonies may induce various unfavorable inflammatory responses. Furthermore, bacterial microbiomes such as Pseudomonas aeruginosa provide several mechanisms that inhibit or stimulate Aspergillus spp. life cycles. In this review, we highlighted fungal and bacterial microbiome interactions in the respiratory tract, with a focus on Aspergillus spp.

3.
Cells ; 11(15)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954162

RESUMO

Since it was first reported, the novel coronavirus disease 2019 (COVID-19) remains an unresolved puzzle for biomedical researchers in different fields. Various treatments, drugs, and interventions were explored as treatments for COVID. Nevertheless, there are no standard and effective therapeutic measures. Meanwhile, mesenchymal stem cell (MSC) therapy offers a new approach with minimal side effects. MSCs and MSC-based products possess several biological properties that potentially alleviate COVID-19 symptoms. Generally, there are three classifications of stem cell therapy: cell-based therapy, tissue engineering, and cell-free therapy. This review discusses the MSC-based and cell-free therapies for patients with COVID-19, their potential mechanisms of action, and clinical trials related to these therapies. Cell-based therapies involve the direct use and injection of MSCs into the target tissue or organ. On the other hand, cell-free therapy uses secreted products from cells as the primary material. Cell-free therapy materials can comprise cell secretomes and extracellular vesicles. Each therapeutic approach possesses different benefits and various risks. A better understanding of MSC-based and cell-free therapies is essential for supporting the development of safe and effective COVID-19 therapy.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , COVID-19/terapia , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , SARS-CoV-2
4.
Int J Infect Dis ; 122: 449-460, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35760384

RESUMO

OBJECTIVES: The characterization of asymptomatic and mildly symptomatic patients with COVID-19 by observing changes in gene expression profile and possible bacterial coinfection is relevant to be investigated. We aimed to identify transcriptomic and coinfection profiles in both groups of patients. METHODS: A ribonucleic acid (RNA) sequence analysis on nasopharyngeal swabs were performed using a shotgun sequencing pipeline. Differential gene analysis, viral genome assembly, and metagenomics analysis were further performed using the retrieved data. RESULTS: Both groups of patients underwent a cilia modification and mRNA splicing. Modulations in macroautophagy, epigenetics, and cell cycle processes were observed specifically in the asymptomatic group. Modulation in the RNA transport was found specifically in the mildly symptomatic group. The mildly symptomatic group showed modulation in the RNA transport and upregulation of autophagy regulator genes and genes in the complement system. No link between viral variants and disease severity was found. Microbiome analysis revealed the elevation of Streptococcus pneumoniae and Veillonella parvula proportion in symptomatic patients. CONCLUSION: A reduction in the autophagy influx and modification in the epigenetic profile might be involved in halting the disease progression. A global dysregulation of RNA processing and translation might cause more severe outcomes in symptomatic individuals. Coinfection by opportunistic microflora should be taken into account when assessing the possible outcome of SARS-CoV-2 infection.


Assuntos
COVID-19 , Coinfecção , COVID-19/diagnóstico , Coinfecção/diagnóstico , Humanos , Nasofaringe , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Análise de Sequência , Análise de Sequência de RNA
5.
Data Brief ; 38: 107376, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34584916

RESUMO

Klutuk Wulung banana (Musa balbisiana Colla, BB Group) is a climacteric fruit whose ripening is influenced by ethylene production. This banana fruit has a relatively slow ripening process time and long shelf-life compared with A genome banana (Musa acuminata, AA). Bananas are usually harvested at a pre-climacteric stage and ripened artificially by exogenous ethylene. Hence, the application of exogenous ethylene at the pre-climacteric stage can accelerate the Klutuk Wulung banana ripening. However, there is no report regarding the effect of exogenous ethylene treatment on Klutuk Wulung banana global gene expression. The knowledge of global gene expression of ethylene treated Klutuk Wulung banana will help to understand this fruit ripening process. In this study, global gene expression data of untreated and ethylene treated Klutuk Wulung banana fruit during ripening were available. Total RNA was extracted from fruit pulp for differential expressed gene analysis using RNA-Seq. The RNA-Seq results obtained were ranged from 34,565,252 to 44,752,129 total reads, with 80.5% to 86.7% of reads were mapped against Klutuk Wulung banana genome reference derived from The Banana Genome Hub. In total, 29,968,128 to 37,776,907 transcripts were detected. The transcriptome data discussed in this article were deposited into NCBI's Gene Expression Omnibus (GEO) Series with an accession number GSE162077. These data can be used as information to identify gene candidates involved in fruit ripening for the application in banana postharvest program.

6.
Noncoding RNA Res ; 5(4): 153-166, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32923747

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for coronavirus disease (COVID-19), potentially have severe kidney adverse effects. This organ expressed angiotensin-converting enzyme 2 (ACE2), the transmembrane protein which facilitate the entering of the virus into the cell. Therefore, early detection of the kidney manifestations of COVID-19 is crucial. Previous studies showed ACE2 role in various indications of this disease, especially in kidney effects. The MicroRNAs (miRNAs) in this organ affected ACE2 expression. Therefore, this review aims at summarizing the literature of a novel miRNA-based therapy and its potential applications in COVID-19-associated nephropathy. Furthermore, previous studies were analyzed for the kidney manifestations of COVID-19 and the miRNAs role that were published on the online databases, namely MEDLINE (PubMed) and Scopus. Several miRNAs, particularly miR-18 (which was upregulated in nephropathy), played a crucial role in ACE2 expression. Therefore, the antimiR-18 roles were summarized in various primate models that aided in developing the therapy for ACE2 related diseases.

7.
Data Brief ; 29: 105337, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32181300

RESUMO

Banana is a climacteric fruit and its ripening process is greatly influenced by presence of ethylene. This physiological climacteric characteristic of banana fruit leads to a fast ripening and a short shelf-life. Application of edible coating such as chitosan aims to prolong fruit shelf life. The knowledge on gene expression will help to understand the fruit ripening process itself and chitosan effect on global gene expression. Global gene expression data of chitosan treated and control of Cavendish banana during fruit ripening were provided. Total RNA was isolated from banana pulp for differential gene expression analysis. The RNA-sequencing generated ranged from 16,155,947 to 23,587,110 total reads, with 75.8%-83.8% of reads were mapped against the genome reference. In total, 33,797-35,944 transcripts were detected. The transcriptomics data discussed in this publication are accessible through NCBI's Gene Expression Omnibus with GEO Series accession number GSE139457. These data provide information to identify candidate genes involved in fruit ripening in response to chitosan coating to design a better banana postharvest management.

8.
Data Brief ; 29: 105216, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32099874

RESUMO

Banana ripening is a complex molecular process that produces visible changes in the texture, aroma, taste and nutritional content. Ripening is controlled by genetic code, metabolic pathway and associated microbiome. We reported the microbial community structure during banana ripening with alcohol treatment to discover endophytic and epiphytic microbes. We observed the pulp and peel from the first and seventh days of Cavendish (Musa acuminata cv. Cavendish) from mature green fruit and treated with 70% alcohol or distilled water sum up to eight samples and applied the 16S rRNA Illumina sequencing from V3-V4 gene region. After quality check 144,368 sequences were obtained in the dataset comprising a total read length of 1,237,805 base pairs. A sum of 199 genera were successfully isolated, with genera Alcaligenes was the most dominant genera at 56.65% and followed by more than 1% were genera Acinetobacter, Enhydrobacter, Pseudomonas, Stenotrophomas, Thermus, and Aerococcus using mothur pipelines. The highest diversity sample with 101 unique genera was belongs to distilled water treated raw bananas peel (NN1K) and the lowest diversity at 38 was belongs to distilled water treated ripe bananas pulp (NN7D). The metagenome data are available at NCBI Sequence Read Archive (SRA) database and Biosample under accession number PRJNA590572. The data contribute to discover different bacterial communities during post-harvest treatment.

9.
Data Brief ; 29: 105133, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32071957

RESUMO

Blood disease of Banana (BDB) is one of the prevalent disease caused by Ralstonia syzygii subsp. celebesensis (Rsc) which cause substantial loss on banana production in Indonesia. To date, the genetic basis of plant defense mechanism caused by blood disease in banana is not available. As a matter of fact, the knowledge of global gene expression will provide important information on plant response to the pathogen infection. Data from transcriptomic analysis in response to blood disease infection from Musa acuminata cv. Mas Kirana (AA group), representing the A genome, and Musa balbisiana cv. Klutuk (BB group), representing the B genome, were firstly reported. The transcriptome data discussed in this publication are accessible through NCBI's Gene Expression Omnibus with GEO Series accession number GSE138749. These data provide the basis for further investigation on the global gene expression which is pivotal to understand the mechanism of disease resistance from two banana genomes in response to blood disease infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...