Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 20(5): 89, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095669

RESUMO

INTRODUCTION: Breeding for oil palm resistance against basal stem rot caused by Ganoderma boninense is challenging and time-consuming. Advanced oil palm gene pools are very limited, hence it is assumed that parental palms have experienced genetic drift and lost their resistance genes against Ganoderma. High-throughput selection criteria should be developed. Metabolomic analysis using 1H nuclear magnetic resonance (NMR) spectroscopy is easy, and the resulting metabolite can be used as a diagnostic tool for detecting disease in various host-pathogen combinations. OBJECTIVES: The objective of this study was to identify metabolite variations in Dura (D) and Pisifera (P) parental palms with different resistance levels against Ganoderma and moderately resistant DxP using 1H NMR analysis. METHODS: Leaf tissues of seven different oil palm categories consisting of: resistant, moderate, and susceptible Dura (D); moderate and susceptible Pisifera (P); resistant Tenera/Pisifera (T/P) parental palms; and moderately resistant DxP variety progenies, were sampled and their metabolites were determined using NMR spectroscopy. RESULTS: Twenty-nine types of metabolites were identified, and most of the metabolites fall in the monosaccharides, amino acids, and fatty acids compound classes. The PCA, PLS-DA, and heatmap multivariate analysis indicated two identified groups of resistance based on their metabolites. The first group consisted of resistant T/P, moderate P, resistant D, and moderately resistant DxP. In contrast, the second group consisted of susceptible P, moderate D, and susceptible D. Glycerol and ascorbic acid were detected as biomarker candidates by OPLS-DA to differentiate moderately resistant DxP from susceptible D and P. The pathway analysis suggested that glycine, serine, and threonine metabolism and taurine and hypotaurine metabolism were involved in the oil palm defense mechanism against Ganoderma. CONCLUSION: A metabolomic study with 1H NMR was able to describe the metabolite composition that could differentiate the characteristics of oil palm resistance against basal stem rot (BSR) caused by G. boninense. These metabolites revealed in this study have enormous potential to become support tools for breeding new oil palm varieties with higher resistance against BSR.


Assuntos
Arecaceae , Resistência à Doença , Ganoderma , Metabolômica , Doenças das Plantas , Folhas de Planta , Ganoderma/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química , Doenças das Plantas/microbiologia , Arecaceae/metabolismo , Arecaceae/química , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA