Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 7(7): 1117-1129, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36595377

RESUMO

Posttransplantation cyclophosphamide (PTCy), given on days +3 and +4, reduces graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (HCT), but its immunologic underpinnings are not fully understood. In a T-cell-replete, major histocompatibility complex-haploidentical murine HCT model (B6C3F1→B6D2F1), we previously showed that PTCy rapidly induces suppressive mechanisms sufficient to prevent GVHD induction by non-PTCy-exposed donor splenocytes infused on day +5. Here, in PTCy-treated mice, we found that depleting Foxp3+ regulatory T cells (Tregs) in the initial graft but not the day +5 splenocytes did not worsen GVHD, yet depleting Tregs in both cellular compartments led to fatal GVHD induced by the day +5 splenocytes. Hence, Tregs were necessary to control GVHD induced by new donor cells, but PTCy's impact on Tregs appeared to be indirect. Therefore, we hypothesized that myeloid-derived suppressor cells (MDSCs) play a complementary role. Functionally suppressive granulocytic and monocytic MDSCs were increased in percentages in PTCy-treated mice, and MDSC percentages were increased after administering PTCy to patients undergoing HLA-haploidentical HCT. PTCy increased colony-stimulating factors critical for MDSC development and rapidly promoted the generation of MDSCs from bone marrow precursors. MDSC reduction via anti-Gr1 treatment in murine HCT did not worsen histopathologic GVHD but resulted in decreased Tregs and inferior survival. The clinical implications of these findings, including the potential impact of expanded MDSCs after PTCy on engraftment and cytokine release syndrome, remain to be elucidated. Moreover, the indirect effect that PTCy has on Tregs, which in turn play a necessary role in GVHD prevention by initially transplanted or subsequently infused T cells, requires further investigation.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Células Supressoras Mieloides , Camundongos , Animais , Células Supressoras Mieloides/patologia , Ciclofosfamida/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/métodos , Doença Enxerto-Hospedeiro/patologia , Linfócitos T Reguladores
2.
Blood ; 141(6): 659-672, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36201744

RESUMO

Relapse limits the therapeutic efficacy both of chimeric antigen receptor (CAR) T cells and allogeneic hematopoietic cell transplantation (allo-HCT). Patients may undergo these therapies sequentially to prevent or treat relapsed malignancy. However, direct integration of the 2 therapies has been avoided over concerns for potential induction of graft-versus-host disease (GVHD) by allogeneic CAR T cells. We have shown in murine T-cell-replete MHC-haploidentical allo-HCT that suppressive mechanisms induced immediately after posttransplant cyclophosphamide (PTCy), given on days +3/+4, prevent GVHD induction by alloreactive T cells infused as early as day +5. Therefore, we hypothesized that allogeneic CAR T cells given in a similarly integrated manner in our murine MHC-haploidentical allo-HCT model may safely exert antitumor effects. Indeed, allogeneic anti-CD19 CAR T cells given early after (day +5) PTCy or even prior to (day 0) PTCy cleared leukemia without exacerbating the cytokine release syndrome occurring from the MHC-haploidentical allo-HCT or interfering with PTCy-mediated GVHD prevention. Meanwhile, CAR T-cell treatment on day +9 or day +14 was safe but less effective, suggesting a limited therapeutic window. CAR T cells infused before PTCy were not eliminated, but surviving CAR T cells continued to proliferate highly and expand despite PTCy. In comparison with infusion on day +5, CAR T-cell infusion on day 0 demonstrated superior clinical efficacy associated with earlier CAR T-cell expansion, higher phenotypic CAR T-cell activation, less CD4+CD25+Foxp3+ CAR T-cell recovery, and transcriptional changes suggesting increased activation of CD4+ CAR T cells and more cytotoxic CD8+ CAR T cells. This study provides mechanistic insight into PTCy's impact on graft-versus-tumor immunity and describes novel approaches to integrate CAR T cells and allo-HCT that may compensate for deficiencies of each individual approach.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Humanos , Camundongos , Animais , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos T CD4-Positivos/patologia , Leucemia/tratamento farmacológico
3.
Blood Adv ; 6(17): 4994-5008, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35819449

RESUMO

Mechanisms of T-cell survival after cytotoxic chemotherapy, including posttransplantation cyclophosphamide (PTCy), are not well understood. Here, we explored the impact of PTCy on human CD8+ T-cell survival and reconstitution, including what cellular pathways drive PTCy resistance. In major histocompatibility complex (MHC)-mismatched mixed lymphocyte culture (MLC), treatment with mafosfamide, an in vitro active cyclophosphamide analog, preserved a relatively normal distribution of naïve and memory CD8+ T cells, whereas the percentages of mucosal-associated invariant T (MAIT) cells and phenotypically stem cell memory (Tscm) T-cell subsets were increased. Activated (CD25+) and proliferating CD8+ T cells were derived from both naïve and memory subsets and were reduced but still present after mafosfamide. By contrast, cyclosporine-A (CsA) or rapamycin treatment preferentially maintained nonproliferating CD25- naïve cells. Drug efflux capacity and aldehyde dehydrogenase-1A1 expression were increased in CD8+ T cells in allogeneic reactions in vitro and in patients, were modulated by common γ-chain cytokines and the proliferative state of the cell, and contributed to CD8+ T-cell survival after mafosfamide. The CD8+ T-cell composition early after hematopoietic cell transplantation (HCT) in PTCy-treated patients was dominated by CD25+ and phenotypically memory, including Tscm and MAIT, cells, consistent with MLC. Yet, MHC-mismatched murine HCT studies revealed that peripherally expanded, phenotypically memory T cells 1 to 3 months after transplant originated largely from naïve-derived rather than memory-derived T cells surviving PTCy, suggesting that initial resistance and subsequent immune reconstitution are distinct. These studies provide insight into the complex immune mechanisms active in CD8+ T-cell survival, differentiation, and reconstitution after cyclophosphamide, with relevance for post-HCT immune recovery, chemotherapy use in autologous settings, and adoptive cellular therapies.


Assuntos
Aldeído Desidrogenase , Transplante de Células-Tronco Hematopoéticas , Animais , Linfócitos T CD8-Positivos , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Humanos , Camundongos , Subpopulações de Linfócitos T
4.
Front Immunol ; 13: 796349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242129

RESUMO

Post-transplantation cyclophosphamide (PTCy) reduces the incidence and severity of graft-versus-host disease (GVHD), thereby improving the safety and accessibility of allogeneic hematopoietic cell transplantation (HCT). We have shown that PTCy works by inducing functional impairment and suppression of alloreactive T cells. We also have identified that reduced proliferation of alloreactive CD4+ T cells at day +7 and preferential recovery of CD4+CD25+Foxp3+ regulatory T cells (Tregs) at day +21 are potential biomarkers associated with optimal PTCy dosing and timing in our B6C3F1→B6D2F1 MHC-haploidentical murine HCT model. To understand whether the effects of PTCy are unique and also to understand better the biology of GVHD prevention by PTCy, here we tested the relative impact of cyclophosphamide compared with five other optimally dosed chemotherapeutics (methotrexate, bendamustine, paclitaxel, vincristine, and cytarabine) that vary in mechanisms of action and drug resistance. Only cyclophosphamide, methotrexate, and cytarabine were effective in preventing fatal GVHD, but cyclophosphamide was superior in ameliorating both clinical and histopathological GVHD. Flow cytometric analyses of blood and spleens revealed that these three chemotherapeutics were distinct in constraining conventional T-cell numerical recovery and facilitating preferential Treg recovery at day +21. However, cyclophosphamide was unique in consistently reducing proliferation and expression of the activation marker CD25 by alloreactive CD4+Foxp3- conventional T cells at day +7. Furthermore, cyclophosphamide restrained the differentiation of alloreactive CD4+Foxp3- conventional T cells at both days +7 and +21, whereas methotrexate and cytarabine only restrained differentiation at day +7. No chemotherapeutic selectively eliminated alloreactive T cells. These data suggest that constrained alloreactive CD4+Foxp3- conventional T-cell numerical recovery and associated preferential CD4+CD25+Foxp3+ Treg reconstitution at day +21 may be potential biomarkers of effective GVHD prevention. Additionally, these results reveal that PTCy uniquely restrains alloreactive CD4+Foxp3- conventional T-cell proliferation and differentiation, which may explain the superior effects of PTCy in preventing GVHD. Further study is needed to determine whether these findings also hold true in clinical HCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Proliferação de Células , Ciclofosfamida/uso terapêutico , Citarabina , Fatores de Transcrição Forkhead , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Metotrexato/farmacologia , Camundongos , Linfócitos T Reguladores
5.
Brain Behav Immun Health ; 19: 100401, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34977822

RESUMO

Inflammatory bowel diseases (IBD) are chronic intestinal disorders characterized by dysregulated immune responses to resident microbiota in genetically susceptible hosts. The activation of the cholinergic system has been proposed for the treatment of IBD patients according to its potential anti-inflammatory effect in vivo. The α-7-nicotinic-acetylcholine receptor (α7nAChR) is involved in the inhibition of inflammatory processes, modulating the production of cytokines, suppressing dendritic cells and macrophage activity, leading to the suppression of T cells. In this review, we address the most recent studies and clinical trials concerning cholinergic signaling and its therapeutic potential for inflammatory bowel diseases.

6.
Biol Blood Marrow Transplant ; 26(1): 94-106, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493539

RESUMO

Allogeneic blood or marrow transplantation (BMT) is a potentially curative therapy for patients with primary immunodeficiency (PID). Safe and effective reduced-intensity conditioning (RIC) approaches that are associated with low toxicity, use alternative donors, and afford good immune reconstitution are needed to advance the field. Twenty PID patients, ranging in age from 4 to 58 years, were treated on a prospective clinical trial of a novel, radiation-free and serotherapy-free RIC, T-cell-replete BMT approach using pentostatin, low-dose cyclophosphamide, and busulfan for conditioning with post-transplantation cyclophosphamide-based graft-versus-host-disease (GVHD) prophylaxis. This was a high-risk cohort with a median hematopoietic cell transplantation comorbidity index of 3. With median follow-up of survivors of 1.9 years, 1-year overall survival was 90% and grade III to IV acute GVHD-free, graft-failure-free survival was 80% at day +180. Graft failure incidence was 10%. Split chimerism was frequently observed at early post-BMT timepoints, with a lower percentage of donor T cells, which gradually increased by day +60. The cumulative incidences of grade II to IV and grade III to IV acute GVHD (aGVHD) were 15% and 5%, respectively. All aGVHD was steroid responsive. No patients developed chronic GVHD. Few significant organ toxicities were observed. Evidence of phenotype reversal was observed for all engrafted patients, even those with significantly mixed chimerism (n = 2) or with unknown underlying genetic defect (n = 3). All 6 patients with pre-BMT malignancies or lymphoproliferative disorders remain in remission. Most patients have discontinued immunoglobulin replacement. All survivors are off immunosuppression for GVHD prophylaxis or treatment. This novel RIC BMT approach for patients with PID has yielded promising results, even for high-risk patients.


Assuntos
Transplante de Medula Óssea , Bussulfano/administração & dosagem , Ciclofosfamida/administração & dosagem , Doença Enxerto-Hospedeiro , Pentostatina/administração & dosagem , Condicionamento Pré-Transplante , Adolescente , Adulto , Bussulfano/efeitos adversos , Criança , Pré-Escolar , Ciclofosfamida/efeitos adversos , Intervalo Livre de Doença , Feminino , Seguimentos , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Transfusão de Linfócitos , Masculino , Pessoa de Meia-Idade , Pentostatina/efeitos adversos , Doenças da Imunodeficiência Primária/mortalidade , Doenças da Imunodeficiência Primária/terapia , Estudos Prospectivos , Taxa de Sobrevida
7.
Front Immunol ; 10: 2668, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849930

RESUMO

Post-transplantation cyclophosphamide (PTCy) has been highly successful at preventing severe acute and chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (HCT). The clinical application of this approach was based on extensive studies in major histocompatibility complex (MHC)-matched murine skin allografting models, in which cyclophosphamide was believed to act via three main mechanisms: (1) selective elimination of alloreactive T cells; (2) intrathymic clonal deletion of alloreactive T-cell precursors; and (3) induction of suppressor T cells. In these models, cyclophosphamide was only effective in very specific contexts, requiring particular cell dose, cell source, PTCy dose, and recipient age. Achievement of transient mixed chimerism also was required. Furthermore, these studies showed differences in the impact of cyclophosphamide on transplanted cells (tumor) versus tissue (skin grafts), including the ability of cyclophosphamide to prevent rejection of the former but not the latter after MHC-mismatched transplants. Yet, clinically PTCy has demonstrated efficacy in MHC-matched or partially-MHC-mismatched HCT across a wide array of patients and HCT platforms. Importantly, clinically significant acute GVHD occurs frequently after PTCy, inconsistent with alloreactive T-cell elimination, whereas PTCy is most active against severe acute GVHD and chronic GVHD. These differences between murine skin allografting and clinical HCT suggest that the above-mentioned mechanisms may not be responsible for GVHD prevention by PTCy. Indeed, recent work by our group in murine HCT has shown that PTCy does not eliminate alloreactive T cells nor is the thymus necessary for PTCy's efficacy. Instead, other mechanisms appear to be playing important roles, including: (1) reduction of alloreactive CD4+ effector T-cell proliferation; (2) induced functional impairment of surviving alloreactive CD4+ and CD8+ effector T cells; and (3) preferential recovery of CD4+ regulatory T cells. Herein, we review the history of cyclophosphamide's use in preventing murine skin allograft rejection and our evolving new understanding of the mechanisms underlying its efficacy in preventing GVHD after HCT. Efforts are ongoing to more fully refine and elaborate this proposed new working model. The completion of this effort will provide critical insight relevant for the rational design of novel approaches to improve outcomes for PTCy-treated patients and for the induction of tolerance in other clinical contexts.


Assuntos
Ciclofosfamida/uso terapêutico , Doença Enxerto-Hospedeiro/prevenção & controle , Imunossupressores/uso terapêutico , Animais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos
8.
Exp Hematol ; 66: 50-62, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30076949

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the presence of the Philadelphia chromosome, which generates the oncogene BCR-ABL1. Protease-activated receptor 1 (PAR1) is involved in tumor progression and angiogenesis. We have previously reported that PAR1 expression is elevated in human leukemias that display a more aggressive clinical behavior, including the blast crisis of CML. In this study, we analyzed the crosstalk between the oncoprotein BCR-ABL and PAR1 in CML. Leukemic cell lines transfected with the BCR-ABL1 oncogene showed significantly higher expression levels of PAR1 compared with that of wild-type counterparts. This phenomenon was reversed by treatment with tyrosine kinase inhibitors (TKIs). Conversely, treatment with the PAR1 antagonist SCH79797 inhibited BCR-ABL expression. The PAR1 antagonist induced apoptosis in a dose- and time-dependent manner. Higher vascular endothelial growth factor (VEGF) levels were observed in cells transfected with BCR-ABL1 than in their wild-type counterparts. VEGF expression was strongly inhibited after treatment with either TKIs or the PAR1 antagonist. Finally, we evaluated PAR1 expression in CML patients who were either in the blast or chronic phases and had either received TKI treatment or no treatment. A significant decrease in PAR1 expression was observed in treatment-responsive patients, as opposed to a significant increase in PAR1 expression levels in treatment-resistant patients. Patients classified as high risk according to the Sokal index showed higher PAR1 expression levels. Our results demonstrate the crosstalk between BCR-ABL and PAR1. These data may offer important insight into the development of new therapeutic strategies for CML.


Assuntos
Proteínas de Fusão bcr-abl/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/farmacologia , Receptor PAR-1/genética , Adulto , Idoso , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Linhagem Celular Tumoral , Cromonas/farmacologia , Progressão da Doença , Relação Dose-Resposta a Droga , Feminino , Flavonoides/farmacologia , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Pessoa de Meia-Idade , Morfolinas/farmacologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/patologia , Cromossomo Filadélfia , Pirimidinas/farmacologia , Pirróis/farmacologia , Quinazolinas/farmacologia , Receptor PAR-1/metabolismo , Transdução de Sinais , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
J Hematol Oncol ; 5: 2, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22300941

RESUMO

BACKGROUND: Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF) are Chronic Myeloproliferative Neoplasms (MPN) characterized by clonal myeloproliferation/myeloaccumulation without cell maturation impairment. The JAK2 V617F mutation and PRV1 gene overexpression may contribute to MPN physiopathology. We hypothesized that deregulation of the apoptotic machinery may also play a role in the pathogenesis of ET and PMF. In this study we evaluated the apoptosis-related gene and protein expression of BCL2 family members in bone marrow CD34+ hematopoietic stem cells (HSC) and peripheral blood leukocytes from ET and PMF patients. We also tested whether the gene expression results were correlated with JAK2 V617F allele burden percentage, PRV1 overexpression, and clinical and laboratory parameters. RESULTS: By real time PCR assay, we observed that A1, MCL1, BIK and BID, as well as A1, BCLW and BAK gene expression were increased in ET and PMF CD34+ cells respectively, while pro-apoptotic BAX and anti-apoptotic BCL2 mRNA levels were found to be lower in ET and PMF CD34+ cells respectively, in relation to controls. In patients' leukocytes, we detected an upregulation of anti-apoptotic genes A1, BCL2, BCL-XL and BCLW. In contrast, pro-apoptotic BID and BIMEL expression were downregulated in ET leukocytes. Increased BCL-XL protein expression in PMF leukocytes and decreased BID protein expression in ET leukocytes were observed by Western Blot. In ET leukocytes, we found a correlation between JAK2 V617F allele burden and BAX, BIK and BAD gene expression and between A1, BAX and BIK and PRV1 gene expression. A negative correlation between PRV1 gene expression and platelet count was observed, as well as a positive correlation between PRV1 gene expression and splenomegaly. CONCLUSIONS: Our results suggest the participation of intrinsic apoptosis pathway in the MPN physiopathology. In addition, PRV1 and JAK2 V617F allele burden were linked to deregulation of the apoptotic machinery.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Isoantígenos/metabolismo , Janus Quinase 2/genética , Proteínas de Membrana/metabolismo , Mutação/genética , Mielofibrose Primária/metabolismo , Receptores de Superfície Celular/metabolismo , Trombocitemia Essencial/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Estudos de Casos e Controles , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Trombocitemia Essencial/genética , Trombocitemia Essencial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...