Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(23)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38422541

RESUMO

Structural and electrochemical properties of bismuth ferrite nanostructures produced by pulsed laser deposition with various morphologies are reported. The nanostructures are also explored as electrode materials for high-performance supercapacitors. Scanning electron microscopy images revealed that various bismuth ferrite morphologies were produced by varying the background pressure (10-6, 0.01, 0.10, 0.25, 0.50, 1.0, 2.0 and 4.0 Torr) in the deposition chamber and submitting them to a thermal treatment after deposition at 500◦C. The as-deposited bismuth ferrite nanostructures range from very compact thin-film (10-6, 0.01, 0.10 Torr), to clustered nanoparticles (0.25, 0.50, 1.0 Torr), to very dispersed arrangement of nanoparticles (2.0 and 4.0 Torr). The electrochemical characteristic of the electrodes was investigated through cyclic voltammetry process. The increase in the specific surface area of the nanostructures as background pressure in the chamber increases does not lead to an increase in interfacial capacitance. This is likely due to the wakening of electrical contact between nanoparticles with increasing porosity of the nanostructures. The thermal treatment increased the contact between nanoparticles, which caused an increase in the interfacial capacitance of the nanostructure deposited under high background pressure in the chamber.

2.
Dalton Trans ; 53(9): 3994-4004, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38226629

RESUMO

A three-dimensional terbium(III) coordination polymer of formula [Tb(bttb)0.5(2,5-pzdc)0.5]n (1) [H4bttb = 1,2,4,5-tetrakis(4'-carboxyphenyl)benzene and H2-2,5-pzdc = 2,5-pyrazinedicarboxylic acid] was obtained under hydrothermal conditions. The bttb4- tetraanion in 1 adopts the bridging and chelating-bridging pseudo-oxo coordination modes while the 2,5-pzdc2- dianion exhibits a rather unusual bis-bidentate bridging pseudo-oxo coordination mode, both ligands being responsible for the stiffness of the resulting 3D structure. Solid-state photoluminescent measurements illustrate that 1 exhibits remarkable green luminescence emission, the most intense band occurring in the region of 550 nm (5D4 → 7F5) with lifetimes at the millisecond scale. Thermometric performances of 1 reveal a maximum relative sensitivity (Sm) of 0.76% K-1 at 295 K (δT = 0.05 K), constituting a TbIII ratiometric solid luminescent thermometer over the physiological temperature range. Variable-temperature static (dc) magnetic susceptibility measurements for 1 in the temperature range 2.0-300 K show the expected behavior for the depopulation of the splitted mJ levels of the 7F7 ground state of the magnetically anisotropic terbium(III) ion plus a weak antiferromagnetic interaction through the carboxylate bridges. No significant out-of-phase magnetic susceptibility signals were observed for 1 in the temperature range 2.0-10.0 K, either in the absence or presence of a static dc magnetic field.

3.
Dalton Trans ; 50(42): 15003-15014, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726676

RESUMO

Herein a 1D Co(II) coordination polymer of formula [Co(η1-L1)(η2-L1)(py)2(H2O)]n (CoCP) has been synthesised using the rigid H2L1 proligand, containing a long spacer bearing two triple bonds. Single-crystal X-ray diffraction showed that Co(II) adopts a distorted octahedral geometry. The state-averaged complete active self-consistent field (SA-CASSCF) calculation showed that the ground state of CoCP is a high spin quartet with a highly multiconfigurational character of its electronic structure. Due to the large intra- and intermolecular distances between the spin carriers, the magnetic interactions are negligible and the zero-field splitting (ZFS) effects of cobalt(II) ions are predominant. This behavior was confirmed by direct current (DC) magnetic measurements and theoretical calculations using the broken-symmetry approach. Quantum chemical calculations indicate that CoCP has a negative axial component possessing mixed tri-axial anisotropy. The DC magnetic susceptibility data were fitted with a Griffith-Figgis Hamiltonian and the obtained parameters are in good agreement with those simulated by the ab initio calculation. Alternating current (AC) magnetic measurements showed a field induced slow magnetic relaxation in CoCP, which is attributed to the hyperfine interaction effects.

4.
Dalton Trans ; 50(31): 10707-10728, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34308946

RESUMO

In this work, we present the synthetic pathway, a refined structural description, complete solid-state characterization and the magnetic properties of four new cobalt(ii) compounds of formulas [Co(H2O)6][Co2(H2mpba)3]·2H2O·0.5dmso (1), [Co(H2O)6][Co2(H2mpba)3]·3H2O·0.5dpss (2), [Co2(H2mpba)2(H2O)4]n·4nH2O (3), and [Co2(H2mpba)2(CH3OH)2(H2O)2]n·0.5nH2O·2ndpss (4) [dpss = 2,2'-dipyridyldisulfide and H4mpba = 1,3-phenylenebis(oxamic) acid], where 2 and 4 were obtained from [Co(dpss)Cl2] (Pre-I) as the source of cobalt(ii). All four compounds are air-stable and were prepared under ambient conditions. 1 and 2 were obtained from a slow diffusion method [cobalt(ii) : H2mpba2- molar ratio used 1 : 1] and their structures are made up of [Co2(H2mpba)3]2- anionic helicate units and [Co(H2O)6]2+ cations, exhibiting supramolecular three-dimensional structures. Interestingly, a supramolecular honeycomb network between the helicate units interacting with each other through R22(10) type hydrogen bonds occurs in 2 hosting one co-crystallized dpss molecule. On the other hand, for the first time, linear (3) and zigzag (4) cobalt(ii) chains were isolated by slow evaporation of stirred solutions of mixed solvents with cobalt(ii) : H2mpba2- in 1 : 2 molar ratio at room temperature. Magnetic measurements of Pre-I revealed a quasi magnetically isolated S = 3/2 spin state with a significant second-order spin-orbit contribution as expected for tetrahedrally coordinated cobalt(ii) ions. The analysis of the variable temperature static (dc) magnetic susceptibility data through first- (1 and 3) and second-order spin-orbit coupling models (2 and 4) reveals the presence of magnetically non-interacting high-spin cobalt(ii) ions with easy-axis (1 and 4)/easy-plane magnetic anisotropies (2 and 4) with low rhombic distortions. Dynamic (ac) magnetic measurements for Pre-I and 1-4 below 8.0 K show that they are examples of field-induced Single-Ion Magnets (SIMs).

5.
Inorg Chem ; 59(18): 12983-12987, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32897061

RESUMO

Two air-stable, isostructural, mononuclear six-coordinate manganese(II) and cobalt(II) oxamate complexes, [M(4-HOpa)2(H2O)2] [4-HOpa = N-4-hydroxyphenyloxamate; M= Mn2+ (1) or Co2+ (2)], exhibit field-induced slow magnetic relaxation. A bottleneck process is observed throughout the temperature range of 2-20 K for 1, while for 2, it dominates only at low temperatures (2-4 K). Additionally, the Raman process [n = 6.9(2)] is responsible for an increase in the relaxation time at higher temperatures to 2.

6.
Dalton Trans ; 49(45): 16106-16124, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32749440

RESUMO

Implementing additional optical (luminescent) properties into the well-known class of single-molecule magnets (SMMs) is considered as a promising route toward obtaining the next generation of optomagnetic materials for quantum information storage and computing. Herein, we report a joint optical and magneto-structural study for the two novel series of lanthanide(iii) complexes of general formula Bu4N[LnIII(HL)4(dmso)]·nH2O where H2L = N-(4-Xphenyl)oxamic acid with X = Cl and n = 2 [Ln = Eu (1_Cl), Gd (2_Cl), Dy (3_Cl), and Tb (4_Cl)] and X = F and n = 3 [Ln = Eu (1_F), Gd (2_F), Dy (3_F), and Tb (4_F)]. All these compounds are mononuclear species with each lanthanide(iii) cation in a low-symmetry nine-coordinate environment (LnO9) which is constituted by four didentate monoprotonated oxamate groups and one dmso molecule. Magnetic measurements show the occurrence of field-induced SMM behavior for the Gd3+ (2_Cl and 2_F), Dy3+ (3_Cl and 3_F), and Tb3+ complexes (4_Cl and 4_F). Solid-state photophysical measurements for the Eu3+ (1_Cl and 1_F) and Tb3+ complexes (4_Cl and 4_F) reveal that both monoprotonated chloro- and fluoro-substituted phenyl(oxamate) ligands are able to sensitize the lanthanide(iii)-based luminescence in the visible region, through an energy transfer process ("antenna effect"), as supported by theoretical calculations for Eu3+ compounds. In particular, 1_Cl and 1_F present a quantum efficiency of approximately 50%, being potentially suitable as efficient light conversion molecular devices (LCMDs).

7.
ACS Nano ; 10(8): 7657-64, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27434047

RESUMO

Self-assembled vertically aligned oxide nanocomposites consisting of magnetic pillars embedded in a ferroelectric matrix have been proposed for logic devices made from arrays of magnetostatically interacting pillars. To control the ratio between the nearest neighbor interaction field and the switching field of the pillars, the pillar composition CoxNi1-xFe2O4 was varied over the range 0 ≤ x ≤ 1, which alters the magnetoelastic and magnetocrystalline anisotropy and the saturation magnetization. Nanocomposites were templated into square arrays of pillars in which the formation of a "checkerboard" ground state after ac-demagnetization indicated dominant magnetostatic interactions. The effect of switching field distribution in disrupting the antiparallel nearest neighbor configuration was analyzed using an Ising model and compared with experimental results.

8.
J Phys Condens Matter ; 28(17): 176002, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27028571

RESUMO

This paper reports the use of muon spin relaxation spectroscopy to study how the aggregation behavior of magnetic surfactants containing lanthanide counterions may be exploited to create spin glass-like materials. Surfactants provide a unique approach to building in randomness, frustration and competing interactions into magnetic materials without requiring a lattice of ordered magnetic species or intervening ligands and elements. We demonstrate that this magnetic behavior may also be manipulated via formation of micelles rather than simple dilution, as well as via design of surfactant molecular architecture. This somewhat unexpected result indicates the potential of using novel magnetic surfactants for the generation and tuning of molecular magnets.


Assuntos
Imãs/química , Compostos Organometálicos/química , Tensoativos/química , Vidro/química , Elementos da Série dos Lantanídeos/química , Micelas , Compostos de Amônio Quaternário/química
9.
Dalton Trans ; 44(24): 10939-42, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26007219

RESUMO

The synthesis, crystal structure and preliminary magnetic characterization of a new heterobimetallic [Mn5(II)Cu5(II)] wheel containing a flexible bis-oxamate type ligand are described. This decanuclear compound exhibits a relatively strong intra-wheel antiferromagnetic interaction leading to a ground spin state S = 10.

10.
Chem Commun (Camb) ; 49(92): 10778-80, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24052000

RESUMO

A unique bistable copper-metallacyclic complex is used as an elegant molecular switch for the reversible formation of emulsions by simple pH variation. This switch may have several exciting applications in biphasic processes such as catalysis and separation science technologies.

11.
ACS Nano ; 2(6): 1313-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19206350

RESUMO

This work focuses on synthetic methods to produce monodisperse Ni colloidal nanoparticles (NPs), in the 4-16 nm size range, and their structural characterization. Narrow size distribution nanoparticles were obtained by high-temperature reduction of a nickel salt and the production of tunable sizes of the Ni NPs was improved compared to other methods previously described. The as-synthesized nanoparticles exhibited spherical shape and highly disordered structure, as it could be assigned by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Annealing at high temperature in organic solvent resulted in an increase of nanoparticle atomic ordering; in this case, the XRD pattern showed an fcc-like structure. Complementary data obtained by X-ray absorption spectroscopy confirmed the complex structure of these nanoparticles. Temperature dependence of the magnetic susceptibility of these highly disordered Ni NPs showed the magnetic behavior cannot be described by the conventional superparamagnetic theory, claiming the importance of the internal structure in the magnetic behavior of such nanomaterials.


Assuntos
Coloides/química , Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Níquel/química , Simulação por Computador , Substâncias Macromoleculares/química , Magnetismo , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...