Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201980

RESUMO

(1) Background: Clinical results on the effects of excess sugar consumption on insulin sensitivity are conflicting, possibly due to differences in sugar type and the insulin sensitivity index (ISI) assessed. Therefore, we compared the effects of consuming four different sugars on insulin sensitivity indices derived from oral glucose tolerance tests (OGTT). (2) Methods: Young adults consumed fructose-, glucose-, high-fructose corn syrup (HFCS)-, sucrose-, or aspartame-sweetened beverages (SB) for 2 weeks. Participants underwent OGTT before and at the end of the intervention. Fasting glucose and insulin, Homeostatic Model Assessment-Insulin Resistance (HOMA-IR), glucose and insulin area under the curve, Surrogate Hepatic Insulin Resistance Index, Matsuda ISI, Predicted M ISI, and Stumvoll Index were assessed. Outcomes were analyzed to determine: (1) effects of the five SB; (2) effects of the proportions of fructose and glucose in all SB. (3) Results: Fructose-SB and the fructose component in mixed sugars negatively affected outcomes that assess hepatic insulin sensitivity, while glucose did not. The effects of glucose-SB and the glucose component in mixed sugar on muscle insulin sensitivity were more negative than those of fructose. (4) Conclusion: the effects of consuming sugar-SB on insulin sensitivity varied depending on type of sugar and ISI index because outcomes assessing hepatic insulin sensitivity were negatively affected by fructose, and outcomes assessing muscle insulin sensitivity were more negatively affected by glucose.


Assuntos
Xarope de Milho Rico em Frutose , Resistência à Insulina , Adulto Jovem , Humanos , Glucose , Teste de Tolerância a Glucose , Aspartame/farmacologia , Zea mays , Sacarose/farmacologia , Frutose/efeitos adversos , Xarope de Milho Rico em Frutose/efeitos adversos , Bebidas , Insulina
2.
Nutrients ; 14(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458210

RESUMO

Increased hepatic lipid content and decreased insulin sensitivity have critical roles in the development of cardiometabolic diseases. Therefore, our objective was to investigate the dose-response effects of consuming high fructose corn syrup (HFCS)-sweetened beverages for two weeks on hepatic lipid content and insulin sensitivity in young (18-40 years) adults (BMI 18-35 kg/m2). In a parallel, double-blinded study, participants consumed three beverages/day providing 0% (aspartame: n = 23), 10% (n = 18), 17.5% (n = 16), or 25% (n = 28) daily energy requirements from HFCS. Magnetic resonance imaging for hepatic lipid content and oral glucose tolerance tests (OGTT) were conducted during 3.5-day inpatient visits at baseline and again at the end of a 15-day intervention. During the 12 intervening outpatient days participants consumed their usual diets with their assigned beverages. Significant linear dose-response effects were observed for increases of hepatic lipid content (p = 0.015) and glucose and insulin AUCs during OGTT (both p = 0.0004), and for decreases in the Matsuda (p = 0.0087) and Predicted M (p = 0.0027) indices of insulin sensitivity. These dose-response effects strengthen the mechanistic evidence implicating consumption of HFCS-sweetened beverages as a contributor to the metabolic dysregulation that increases risk for nonalcoholic fatty liver disease and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Xarope de Milho Rico em Frutose , Resistência à Insulina , Bebidas Adoçadas com Açúcar , Bebidas , Frutose/farmacologia , Xarope de Milho Rico em Frutose/efeitos adversos , Humanos , Lipídeos , Bebidas Adoçadas com Açúcar/efeitos adversos , Adulto Jovem
3.
J Clin Endocrinol Metab ; 106(11): 3248-3264, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34265055

RESUMO

CONTEXT: Studies in rodents and humans suggest that high-fructose corn syrup (HFCS)-sweetened diets promote greater metabolic dysfunction than sucrose-sweetened diets. OBJECTIVE: To compare the effects of consuming sucrose-sweetened beverage (SB), HFCS-SB, or a control beverage sweetened with aspartame on metabolic outcomes in humans. METHODS: A parallel, double-blinded, NIH-funded study. Experimental procedures were conducted during 3.5 days of inpatient residence with controlled feeding at a research clinic before (baseline) and after a 12-day outpatient intervention period. Seventy-five adults (18-40 years) were assigned to beverage groups matched for sex, body mass index (18-35 kg/m2), and fasting triglyceride, lipoprotein and insulin concentrations. The intervention was 3 servings/day of sucrose- or HFCS-SB providing 25% of energy requirement or aspartame-SB, consumed for 16 days. Main outcome measures were %hepatic lipid, Matsuda insulin sensitivity index (ISI), and Predicted M ISI. RESULTS: Sucrose-SB increased %hepatic lipid (absolute change: 0.6 ±â€…0.2%) compared with aspartame-SB (-0.2 ±â€…0.2%, P < 0.05) and compared with baseline (P < 0.001). HFCS-SB increased %hepatic lipid compared with baseline (0.4 ±â€…0.2%, P < 0.05). Compared with aspartame-SB, Matsuda ISI decreased after consumption of HFCS- (P < 0.01) and sucrose-SB (P < 0.01), and Predicted M ISI decreased after consumption of HFCS-SB (P < 0.05). Sucrose- and HFCS-SB increased plasma concentrations of lipids, lipoproteins, and uric acid compared with aspartame-SB. No outcomes were differentially affected by sucrose- compared with HFCS-SB. Beverage group effects remained significant when analyses were adjusted for changes in body weight. CONCLUSION: Consumption of both sucrose- and HFCS-SB induced detrimental changes in hepatic lipid, insulin sensitivity, and circulating lipids, lipoproteins and uric acid in 2 weeks.


Assuntos
Xarope de Milho Rico em Frutose/efeitos adversos , Resistência à Insulina , Fígado/patologia , Sacarose/efeitos adversos , Bebidas Adoçadas com Açúcar/efeitos adversos , Edulcorantes/efeitos adversos , Adulto , Biomarcadores/análise , Índice de Massa Corporal , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Fígado/efeitos dos fármacos , Masculino , Prognóstico
5.
Nutrients ; 13(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652807

RESUMO

Overconsumption of sugar-sweetened beverages increases risk factors associated with cardiometabolic disease, in part due to hepatic fructose overload. However, it is not clear whether consumption of beverages containing fructose as naturally occurring sugar produces equivalent metabolic dysregulation as beverages containing added sugars. We compared the effects of consuming naturally-sweetened orange juice (OJ) or sucrose-sweetened beverages (sucrose-SB) for two weeks on risk factors for cardiometabolic disease. Healthy, overweight women (n = 20) were assigned to consume either 3 servings of 100% orange juice or sucrose-SB/day. We conducted 16-hour serial blood collections and 3-h oral glucose tolerance tests during a 30-h inpatient visit at baseline and after the 2-week diet intervention. The 16-h area under the curve (AUC) for uric acid increased in subjects consuming sucrose-SB compared with subjects consuming OJ. Unlike sucrose-SB, OJ did not significantly increase fasting or postprandial lipoproteins. Consumption of both beverages resulted in reductions in the Matsuda insulin sensitivity index (OJ: -0.40 ± 0.18, p = 0.04 within group; sucrose-SB: -1.0 ± 0.38, p = 0.006 within group; p = 0.53 between groups). Findings from this pilot study suggest that consumption of OJ at levels above the current dietary guidelines for sugar intake does not increase plasma uric acid concentrations compared with sucrose-SB, but appears to lead to comparable decreases of insulin sensitivity.


Assuntos
Citrus sinensis , Sucos de Frutas e Vegetais , Sobrepeso/sangue , Sacarose/análise , Bebidas Adoçadas com Açúcar , Adulto , Área Sob a Curva , Índice de Massa Corporal , Fatores de Risco Cardiometabólico , Feminino , Humanos , Resistência à Insulina , Lipoproteínas/sangue , Síndrome Metabólica/etiologia , Síndrome Metabólica/prevenção & controle , Sobrepeso/complicações , Sobrepeso/terapia , Projetos Piloto , Período Pós-Prandial/fisiologia , Ácido Úrico/sangue
6.
Nutrients ; 12(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352724

RESUMO

Sugar-sweetened beverage (sugar-SB) consumption is associated with body weight gain. We investigated whether the changes of (Δ) circulating leptin contribute to weight gain and ad libitum food intake in young adults consuming sugar-SB for two weeks. In a parallel, double-blinded, intervention study, participants (n = 131; BMI 18-35 kg/m2; 18-40 years) consumed three beverages/day containing aspartame or 25% energy requirement as glucose, fructose, high fructose corn syrup (HFCS) or sucrose (n = 23-28/group). Body weight, ad libitum food intake and 24-h leptin area under the curve (AUC) were assessed at Week 0 and at the end of Week 2. The Δbody weight was not different among groups (p = 0.092), but the increases in subjects consuming HFCS- (p = 0.0008) and glucose-SB (p = 0.018) were significant compared with Week 0. Subjects consuming sucrose- (+14%, p < 0.0015), fructose- (+9%, p = 0.015) and HFCS-SB (+8%, p = 0.017) increased energy intake during the ad libitum food intake trial compared with subjects consuming aspartame-SB (-4%, p = 0.0037, effect of SB). Fructose-SB decreased (-14 ng/mL × 24 h, p = 0.0006) and sucrose-SB increased (+25 ng/mL × 24 h, p = 0.025 vs. Week 0; p = 0.0008 vs. fructose-SB) 24-h leptin AUC. The Δad libitum food intake and Δbody weight were not influenced by circulating leptin in young adults consuming sugar-SB for 2 weeks. Studies are needed to determine the mechanisms mediating increased energy intake in subjects consuming sugar-SB.


Assuntos
Peso Corporal/efeitos dos fármacos , Açúcares da Dieta/efeitos adversos , Leptina/sangue , Bebidas Adoçadas com Açúcar/efeitos adversos , Edulcorantes/efeitos adversos , Adolescente , Adulto , Área Sob a Curva , Aspartame/efeitos adversos , Método Duplo-Cego , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Feminino , Humanos , Masculino , Período Pós-Prandial/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Adulto Jovem
7.
Metabolism ; 112: 154356, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32916151

RESUMO

BACKGROUND: Fructose consumption increases risk factors for cardiometabolic disease. It is assumed that the effects of free sugars on risk factors are less potent because they contain less fructose. We compared the effects of consuming fructose, glucose or their combination, high fructose corn syrup (HFCS), on cardiometabolic risk factors. METHODS: Adults (18-40 years; BMI 18-35 kg/m2) participated in a parallel, double-blinded dietary intervention during which beverages sweetened with aspartame, glucose (25% of energy requirements (ereq)), fructose or HFCS (25% and 17.5% ereq) were consumed for two weeks. Groups were matched for sex, baseline BMI and plasma lipid/lipoprotein concentrations. 24-h serial blood samples were collected at baseline and at the end of intervention. Primary outcomes were 24-h triglyceride AUC, LDL-cholesterol (C), and apolipoprotein (apo)B. Interactions between fructose and glucose were assessed post hoc. FINDINGS: 145 subjects (26.0 ±â€¯5.8 years; body mass index 25.0 ±â€¯3.7 kg/m2) completed the study. As expected, the increase of 24-h triglycerides compared with aspartame was highest during fructose consumption (25%: 6.66 mmol/Lx24h 95% CI [1.90 to 11.63], P = 0.0013 versus aspartame), intermediate during HFCS consumption (25%: 4.68 mmol/Lx24h 95% CI [-0.18 to 9.55], P = 0.066 versus aspartame) and lowest during glucose consumption. In contrast, the increase of LDL-C was highest during HFCS consumption (25%: 0.46 mmol/L 95% CI [0.16 to 0.77], P = 0.0002 versus aspartame) and intermediate during fructose consumption (25%: 0.33 mmol/L 95% CI [0.03 to 0.63], P = 0.023 versus aspartame), as was the increase of apoB (HFCS-25%: 0.108 g/L 95%CI [0.032 to 0.184], P = 0.001; fructose 25%: 0.072 g/L 95%CI [-0.004 to 0.148], P = 0.074 versus aspartame). The post hoc analyses showed significant interactive effects of fructose*glucose on LDL-C and apoB (both P < 0.01), but not on 24-h triglyceride (P = 0.340). CONCLUSION: A significant interaction between fructose and glucose contributed to increases of lipoprotein risk factors when the two monosaccharides were co-ingested as HFCS. Thus, the effects of HFCS on lipoprotein risks factors are not solely mediated by the fructose content and it cannot be assumed that glucose is a benign component of HFCS. Our findings suggest that HFCS may be as harmful as isocaloric amounts of pure fructose and provide further support for the urgency to implement strategies to limit free sugar consumption.


Assuntos
Aspartame/farmacologia , Frutose/farmacologia , Glucose/farmacologia , Lipoproteínas/sangue , Triglicerídeos/sangue , Adolescente , Adulto , Índice de Massa Corporal , LDL-Colesterol/sangue , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Adulto Jovem
8.
Nutrients ; 12(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854403

RESUMO

Alterations of transition metal levels have been associated with obesity, hepatic steatosis, and metabolic syndrome in humans. Studies in animals indicate an association between dietary sugars and copper metabolism. Our group has conducted a study in which young adults consumed beverages sweetened with glucose, fructose, high fructose corn syrup (HFCS), or aspartame for two weeks and has reported that consumption of both fructose- and HFCS-sweetened beverages increased cardiovascular disease risk factors. Baseline and intervention serum samples from 107 participants of this study were measured for copper metabolism (copper, ceruloplasmin ferroxidase activity, ceruloplasmin protein), zinc levels, and iron metabolism (iron, ferritin, and transferrin) parameters. Fructose and/or glucose consumption were associated with decreased ceruloplasmin ferroxidase activity and serum copper and zinc concentrations. Ceruloplasmin protein levels did not change in response to intervention. The changes in copper concentrations were correlated with zinc, but not with iron. The decreases in copper, ceruloplasmin ferroxidase activity, ferritin, and transferrin were inversely associated with the increases in metabolic risk factors associated with sugar consumption, specifically, apolipoprotein CIII, triglycerides, or post-meal glucose, insulin, and lactate responses. These findings are the first evidence that consumption of sugar-sweetened beverages can alter clinical parameters of transition metal metabolism in healthy subjects.


Assuntos
Cobre/metabolismo , Açúcares da Dieta/farmacologia , Ferro/metabolismo , Edulcorantes/farmacologia , Zinco/metabolismo , Adulto , Aspartame/farmacologia , Proteínas Sanguíneas/análise , Ceruloplasmina/metabolismo , Feminino , Ferritinas/sangue , Frutose/administração & dosagem , Frutose/farmacologia , Glucose/administração & dosagem , Glucose/farmacologia , Xarope de Milho Rico em Frutose/farmacologia , Humanos , Lipídeos/sangue , Masculino , Transferrina/metabolismo
9.
Am J Physiol Endocrinol Metab ; 315(2): E141-E149, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29634315

RESUMO

Epidemiological and clinical research studies have provided ample evidence demonstrating that consumption of sugar-sweetened beverages increases risk factors involved in the development of obesity, Type 2 diabetes, and cardiovascular disease (CVD). Our previous study demonstrated that when compared with aspartame (Asp), 2 wk of high-fructose corn syrup (HFCS)-sweetened beverages provided at 25% of daily energy requirement was associated with increased body weight, postprandial (pp) triglycerides (TG), and fasting and pp CVD risk factors in young adults. The fatty acid ethanolamide, anandamide (AEA), and the monoacylglycerol, 2-arachidonoyl- sn-glycerol (2-AG), are two primary endocannabinoids (ECs) that play a role in regulating food intake, increasing adipose storage, and regulating lipid metabolism. Therefore, we measured plasma concentrations of ECs and their analogs, oleoylethanolamide (OEA), docosahexaenoyl ethanolamide (DHEA), and docosahexaenoyl glycerol (DHG), in participants from our previous study who consumed HFCS- or Asp-sweetened beverages to determine associations with weight gain and CVD risk factors. Two-week exposure to either HFCS- or Asp-sweetened beverages resulted in significant differences in the changes in fasting levels of OEA and DHEA between groups after the testing period. Subjects who consumed Asp, but not HFCS, displayed a reduction in AEA, OEA, and DHEA after the testing period. In contrast, there were significant positive relationships between AEA, OEA, and DHEA vs. ppTG, ppApoCIII, and ppApoE in those consuming HFCS, but not in those consuming Asp. Our findings reveal previously unknown associations between circulating ECs and EC-related molecules with markers of lipid metabolism and CVD risk after HFCS consumption.


Assuntos
Amidas/metabolismo , Apolipoproteína C-III/sangue , Apolipoproteínas E/sangue , Bebidas , Ácidos Graxos/metabolismo , Xarope de Milho Rico em Frutose/farmacologia , Edulcorantes/farmacologia , Triglicerídeos/sangue , Adulto , Aspartame/farmacologia , Dieta , Endocanabinoides/sangue , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Ácidos Oleicos/sangue , Adulto Jovem
10.
Mol Metab ; 8: 51-64, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29331507

RESUMO

OBJECTIVE: Identify determinants of plasma adropin concentrations, a secreted peptide translated from the Energy Homeostasis Associated (ENHO) gene linked to metabolic control and vascular function. METHODS: Associations between plasma adropin concentrations, demographics (sex, age, BMI) and circulating biomarkers of lipid and glucose metabolism were assessed in plasma obtained after an overnight fast in humans. The regulation of adropin expression was then assessed in silico, in cultured human cells, and in animal models. RESULTS: In humans, plasma adropin concentrations are inversely related to atherogenic LDL-cholesterol (LDL-C) levels in men (n = 349), but not in women (n = 401). Analysis of hepatic Enho expression in male mice suggests control by the biological clock. Expression is rhythmic, peaking during maximal food consumption in the dark correlating with transcriptional activation by RORα/γ. The nadir in the light phase coincides with the rest phase and repression by Rev-erb. Plasma adropin concentrations in nonhuman primates (rhesus monkeys) also exhibit peaks coinciding with feeding times (07:00 h, 15:00 h). The ROR inverse agonists SR1001 and the 7-oxygenated sterols 7-ß-hydroxysterol and 7-ketocholesterol, or the Rev-erb agonist SR9009, suppress ENHO expression in cultured human HepG2 cells. Consumption of high-cholesterol diets suppress expression of the adropin transcript in mouse liver. However, adropin over expression does not prevent hypercholesterolemia resulting from a high cholesterol diet and/or LDL receptor mutations. CONCLUSIONS: In humans, associations between plasma adropin concentrations and LDL-C suggest a link with hepatic lipid metabolism. Mouse studies suggest that the relationship between adropin and cholesterol metabolism is unidirectional, and predominantly involves suppression of adropin expression by cholesterol and 7-oxygenated sterols. Sensing of fatty acids, cholesterol and oxysterols by the RORα/γ ligand-binding domain suggests a plausible functional link between adropin expression and cellular lipid metabolism. Furthermore, the nuclear receptors RORα/γ and Rev-erb may couple adropin synthesis with circadian rhythms in carbohydrate and lipid metabolism.


Assuntos
LDL-Colesterol/sangue , Relógios Circadianos , Homeostase , Peptídeos/sangue , Proteínas/metabolismo , Adulto , Idoso , Animais , Proteínas Sanguíneas , Células Cultivadas , Feminino , Glucose/metabolismo , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Fígado/metabolismo , Macaca mulatta , Masculino , Camundongos , Pessoa de Meia-Idade , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas/genética
11.
FASEB J ; 31(4): 1639-1649, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28096235

RESUMO

Cardiotrophin (CT)-1 is a regulator of glucose and lipid homeostasis. In the present study, we analyzed whether CT-1 also acts to peripherally regulate metabolic rhythms and adipose tissue core clock genes in mice. Moreover, the circadian pattern of plasma CT-1 levels was evaluated in normal-weight and overweight subjects. The circadian rhythmicity of oxygen consumption rate (Vo2) was disrupted in aged obese CT-1-deficient (CT-1-/-) mice (12 mo). Although circadian rhythms of Vo2 were conserved in young lean CT-1-/- mice (2 mo), CT-1 deficiency caused a phase shift of the acrophase. Most of the clock genes studied (Clock, Bmal1, and Per2) displayed a circadian rhythm in adipose tissue of both wild-type (WT) and CT-1-/- mice. However, the pattern was altered in CT-1-/- mice toward a lower percentage of the rhythm or lower amplitude, especially for Bmal1 and Clock. Moreover, CT-1 mRNA levels in adipose tissue showed significant circadian fluctuations in young WT mice. In humans, CT-1 plasma profile exhibited a 24-h circadian rhythm in normal-weight but not in overweight subjects. The 24-h pattern of CT-1 was characterized by a pronounced increase during the night (from 02:00 to 08:00). These observations suggest a potential role for CT-1 in the regulation of metabolic circadian rhythms.-López-Yoldi, M., Stanhope, K. L., Garaulet, M., Chen, X. G., Marcos-Gómez, B., Carrasco-Benso, M. P., Santa Maria, E. M., Escoté, X., Lee, V., Nunez, M. V., Medici, V., Martínez-Ansó, E., Sáinz, N., Huerta, A. E., Laiglesia, L. M., Prieto, J., Martínez, J. A., Bustos, M., Havel, P. J., Moreno-Aliaga, M. J. Role of cardiotrophin-1 in the regulation of metabolic circadian rhythms and adipose core clock genes in mice and characterization of 24-h circulating CT-1 profiles in normal-weight and overweight/obese subjects.


Assuntos
Tecido Adiposo/metabolismo , Proteínas CLOCK/genética , Ritmo Circadiano , Citocinas/metabolismo , Obesidade/metabolismo , Tecido Adiposo/fisiologia , Adolescente , Adulto , Animais , Proteínas CLOCK/metabolismo , Citocinas/sangue , Citocinas/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Consumo de Oxigênio
12.
Am J Clin Nutr ; 101(6): 1144-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25904601

RESUMO

BACKGROUND: National Health and Nutrition Examination Survey data show an increased risk of cardiovascular disease (CVD) mortality with an increased intake of added sugar. OBJECTIVE: We determined the dose-response effects of consuming beverages sweetened with high-fructose corn syrup (HFCS) at zero, low, medium, and high proportions of energy requirements (Ereq) on circulating lipid/lipoprotein risk factors for CVD and uric acid in adults [age: 18-40 y; body mass index (in kg/m(2)): 18-35]. DESIGN: We conducted a parallel-arm, nonrandomized, double-blinded intervention study in which adults participated in 3.5 inpatient days of baseline testing at the University of California Davis Clinical and Translational Science Center's Clinical Research Center. Participants then consumed beverages sweetened with HFCS at 0% (aspartame sweetened, n = 23), 10% (n = 18), 17.5% (n = 16), or 25% (n = 28) of Ereq during 13 outpatient days and during 3.5 inpatient days of intervention testing at the research center. We conducted 24-h serial blood collections during the baseline and intervention testing periods. RESULTS: Consuming beverages containing 10%, 17.5%, or 25% Ereq from HFCS produced significant linear dose-response increases of lipid/lipoprotein risk factors for CVD and uric acid: postprandial triglyceride (0%: 0 ± 4; 10%: 22 ± 8; 17.5%: 25 ± 5: 25%: 37 ± 5 mg/dL, mean of Δ ± SE, P < 0.0001 effect of HFCS-dose), fasting LDL cholesterol (0%: -1.0 ± 3.1; 10%: 7.4 ± 3.2; 17.5%: 8.2 ± 3.1; 25%: 15.9 ± 3.1 mg/dL, P < 0.0001), and 24-h mean uric acid concentrations (0%: -0.13 ± 0.07; 10%: 0.15 ± 0.06; 17.5%: 0.30 ± 0.07; 25%: 0.59 ± 0.09 mg/dL, P < 0.0001). Compared with beverages containing 0% HFCS, all 3 doses of HFCS-containing beverages increased concentrations of postprandial triglyceride, and the 2 higher doses increased fasting and/or postprandial concentrations of non-HDL cholesterol, LDL cholesterol, apolipoprotein B, apolipoprotein CIII, and uric acid. CONCLUSIONS: Consuming beverages containing 10%, 17.5%, or 25% Ereq from HFCS produced dose-dependent increases in circulating lipid/lipoprotein risk factors for CVD and uric acid within 2 wk. These results provide mechanistic support for the epidemiologic evidence that the risk of cardiovascular mortality is positively associated with consumption of increasing amounts of added sugars. This trial was registered at clinicaltrials.gov as NCT01103921.


Assuntos
Bebidas , Doenças Cardiovasculares/sangue , Xarope de Milho Rico em Frutose/efeitos adversos , Edulcorantes/efeitos adversos , Adolescente , Adulto , Apolipoproteína C-III/sangue , Apolipoproteínas B/sangue , Glicemia/metabolismo , Índice de Massa Corporal , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Relação Dose-Resposta a Droga , Método Duplo-Cego , Jejum , Feminino , Xarope de Milho Rico em Frutose/administração & dosagem , Humanos , Masculino , Inquéritos Nutricionais , Período Pós-Prandial/efeitos dos fármacos , Fatores de Risco , Edulcorantes/administração & dosagem , Triglicerídeos/sangue , Ácido Úrico/sangue , Circunferência da Cintura , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...