Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446067

RESUMO

Nanoparticles are extensively used in industrial products or as food additives. However, despite their contribution to improving our quality of life, concerns have been raised regarding their potential impact on occupational and public health. To speed up research assessing nanoparticle-related hazards, this study was undertaken to identify early markers of harmful effects on the lungs. Female Sprague Dawley rats were either exposed to crystalline silica DQ-12 with instillation, or to titanium dioxide P25, carbon black Printex-90, or multi-walled carbon nanotube Mitsui-7 with nose-only inhalation. Tissues were collected at three post-exposure time points to assess short- and long-term effects. All particles induced lung inflammation. Histopathological and biochemical analyses revealed phospholipid accumulation, lipoproteinosis, and interstitial thickening with collagen deposition after exposure to DQ-12. Exposure to the highest dose of Printex-90 and Mitsui-7, but not P25, induced some phospholipid accumulation. Comparable histopathological changes were observed following exposure to P25, Printex-90, and Mitsui-7. Comparison of overall gene expression profiles identified 15 potential early markers of adverse lung outcomes induced by spherical particles. With Mitsui-7, a distinct gene expression signature was observed, suggesting that carbon nanotubes trigger different toxicity mechanisms to spherical particles.


Assuntos
Nanotubos de Carbono , Ratos , Feminino , Animais , Nanotubos de Carbono/toxicidade , Qualidade de Vida , Ratos Sprague-Dawley , Pulmão/patologia , Dióxido de Silício/farmacologia , Exposição por Inalação/efeitos adversos , Líquido da Lavagem Broncoalveolar/química
2.
Nanotoxicology ; 14(9): 1227-1240, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32909484

RESUMO

Despite their numerous possible applications, the potential impact of carbon engineered nanomaterials (CEN) on human health, especially after inhalation exposure, is still questioned. Quantification of CEN in the respiratory system is a recurring issue and deposition and pulmonary biopersistence data are essential for toxicological evaluation. In this context, a fully validated standard method for CEN quantification in lung tissue is therefore imperative. The present method, based on the National Institute for Occupational Safety and Health 5040 method for atmospheric elemental and organic carbon analysis as well as on previous developments on biological matrices, involves a simple thermogravimetric analysis (TGA) of lyophilized samples, possibly preceded by a step of chemical digestion of the tissues depending on the nature of CEN investigated. The analytical method was validated for 4 CEN (carbon black as well as 3 long and thick or short and thin carbon nanotubes) for selectivity, linearity, detection and quantification limits, bias, and within-batch and between-batch precision. Calibration curves show linearity in the range of 1-40 mg/g lyophilized lung. Limits of detection for the different CEN range from 6 to 18 µg in 20 mg dry test sample. On average, within-batch precision was kept below 20 and 10% for analysis with or without a prior digestion step, respectively, whereas the corresponding between-batch precision levels reached almost 20 and 15%, respectively. The method was successfully applied to toxicological investigations for the quantitative analysis of CEN contents in rat lung exposed by inhalation.


Assuntos
Exposição por Inalação/análise , Pulmão/química , Nanotubos de Carbono/análise , Fuligem/análise , Aerossóis , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Nanotubos de Carbono/química , Ratos , Ratos Sprague-Dawley , Fuligem/química , Propriedades de Superfície
3.
J Occup Med Toxicol ; 15: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426022

RESUMO

BACKGROUND: Carbon disulfide (CS2) exacerbates the effect of noise on hearing, and disrupts the vestibular system. The goal of this study was to determine whether these effects are also observed with intermittent CS2 exposure. METHODS: Rats were exposed for 4 weeks (5 days/week, 6 h/day) to a band noise at 106 dB SPL either alone or combined with continuous (63 ppm or 250 ppm) or intermittent (15 min/h or 2 × 15 min/h at 250 ppm) CS2. Hearing function was assessed by measuring distortion product otoacoustic emissions (DPOAEs); balance was monitored based on the vestibulo-ocular reflex (VOR). Functional measurements were performed before, at the end of exposure and 4 weeks later. Histological analyses of the inner ear were also performed following exposure and after the 4-week recovery period. RESULTS: The results obtained here confirmed that CS2 exposure exerts two differential temporary effects on hearing: (1) it attenuates the noise-induced DPOAE decrease below 6 kHz probably through action on the middle ear reflex when exposure lasts 15 min per hour, and (2) continuous exposure to 250 ppm for 6 h extends the frequency range affected by noise up to 9.6 kHz (instead of 6 kHz with noise alone). With regard to balance, the VOR was reversibly disrupted at the two highest doses of CS2 (2 × 15 min/h and continuous 250 ppm). No morphological alterations to the inner ear were observed. CONCLUSION: These results reveal that short periods of CS2 exposure can alter the sensitivity of the cochlea to noise at a dose equivalent to only 10 times the short-term occupational limit value, and intermittent exposure to CS2 (2 × 15 min/h) can alter the function of the vestibular system.

4.
Toxicol Lett ; 314: 133-141, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325633

RESUMO

Hexavalent chromium (Cr(VI)) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and plasma attest to the last few hours of total chromium exposure (all oxidation states of chromium), chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure over the last few days. Before recommending Cr in RBC (CrIE) as a biological indicator of Cr(VI) exposure, in vivo studies must be undertaken to assess its reliability. The present study examines the kinetics of Cr(VI) in rat after a single intravenous dose of ammonium dichromate. Chromium levels were measured in plasma, red blood cells and urine. The decay of the chromium concentration in plasma is one-phase-like (with half-life time of 0.55 day) but still measurable two days post injection. The excretion of urinary chromium peaks between five and six hours after injection and shows large variations. Intra-erythrocyte chromium (CrIE) was very constant up to a minimum of 2 days and half-life time was estimated to 13.3 days. Finally, Cr(III) does not interfere with Cr(VI) incorporation in RBC. On the basis of our results, we conclude that, unlike urinary chromium, chromium levels in RBC are indicative of the amount of dichromate (Cr(VI)) in blood.


Assuntos
Carcinógenos Ambientais/administração & dosagem , Carcinógenos Ambientais/metabolismo , Cromo/administração & dosagem , Cromo/sangue , Eritrócitos/metabolismo , Administração Intravenosa , Animais , Biomarcadores/sangue , Biomarcadores/urina , Carga Corporal (Radioterapia) , Carcinógenos Ambientais/farmacocinética , Carcinógenos Ambientais/toxicidade , Cromo/farmacocinética , Cromo/toxicidade , Masculino , Modelos Biológicos , Oxirredução , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Especificidade da Espécie , Toxicocinética
5.
Neurotoxicology ; 74: 58-66, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31121240

RESUMO

Volatile organic solvents are frequently present in industrial atmospheres. Their lipophilic properties mean they quickly reach the brain following inhalation. Acute exposure to some solvents perturbs the middle ear reflex, which could jeopardize cochlear protection against loud noises. As the physiological mechanisms involved in this protective reflex are highly complex, in vivo rodent models are required to allow rapid and reliable identification of any adverse effects of solvents on the middle ear reflex (MER). In this study, MER amplitude was measured in anesthetized Brown-Norway rats by monitoring the decrease in distortion product otoacoustic emissions (DPOAEs) caused by a contralateral stimulation. Our screening test consisted in measuring the impact of inhalation of solvent vapors at 3000 ppm for 15 min on the MER amplitude. We had previously studied a selection of aromatic solvents with this model; here, we extended the analysis to volatile compounds from other chemical families. The results obtained shed light on the mechanisms involved in the interactions between solvents and their neuronal targets. Thus, benzene and chlorobenzene had the greatest effect on MER (≥ + 1.8 dB), followed by a group composed of toluene, styrene, p-xylene, m-xylene, tetrachloroethylene and cyclohexane, which had a moderate effect on the MER (between + 0.3 and + 0.7 dB). Finally, trichloroethylene, n-hexane, methyl-ethyl-ketone, acetone, o-xylene, and ethylbenzene had no effect on the MER. Thus, the effect of solvents on the MER is not simply linked to their lipophilicity, rather it depends on specific interactions with neuronal targets. These interactions appear to be governed by the compound's chemical structure, e.g. the presence of an aromatic ring and its steric hindrance. In addition, perturbation of the MER by a solvent is independent of its toxic effects on cochlear cells. As the MER plays a protective role against exposure to high-intensity noises, these findings could have a significant impact in terms of prevention for subjects exposed to both noise and solvents.


Assuntos
Vias Auditivas/efeitos dos fármacos , Orelha Média/efeitos dos fármacos , Reflexo Acústico/efeitos dos fármacos , Solventes/toxicidade , Estimulação Acústica , Animais , Cóclea/patologia , Relação Dose-Resposta a Droga , Ketamina/toxicidade , Masculino , Ruído/efeitos adversos , Emissões Otoacústicas Espontâneas/efeitos dos fármacos , Ratos , Ratos Endogâmicos BN , Relação Estrutura-Atividade , Xilazina/toxicidade
6.
Toxicol Appl Pharmacol ; 375: 17-31, 2019 07 15.
Artigo em Espanhol | MEDLINE | ID: mdl-31075343

RESUMO

Multi-walled carbon nanotubes (MWCNTs), which vary in length, diameter, functionalization and specific surface area, are used in diverse industrial processes. Since these nanomaterials have a high aspect ratio and are biopersistant in the lung, there is a need for a rapid identification of their potential health hazard. We assessed in Sprague-Dawley rats the pulmonary toxicity of two pristine MWCNTs (the "long and thick" NM-401 and the "short and thin" NM-403) following either intratracheal instillation or 4-week inhalation in order to gain insights into the predictability and intercomparability of the two methods. The deposited doses following inhalation were lower than the instilled doses. Both types of carbon nanotube induced pulmonary neutrophil influx using both exposure methods. This influx correlated with deposited surface area across MWCNT types and means of exposure at two different time points, 1-3 days and 28-30 days post-exposure. Increased levels of DNA damage were observed across doses and time points for both exposure methods, but no dose-response relationship was observed. Intratracheal instillation of NM-401 induced fibrosis at the highest dose while lower lung deposited doses obtained by inhalation did not induce such lung pathology. No fibrosis was observed following NM-403 exposure. When the deposited dose was taken into account, sub-acute inhalation and a single instillation of NM-401 and NM-403 produced very similar inflammation and DNA damage responses. Our data suggest that the dose-dependent inflammatory responses observed after intratracheal instillation and inhalation of MWCNTs are similar and were predicted by the deposited surface area.


Assuntos
Pneumopatias/induzido quimicamente , Nanotubos de Carbono/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Vias de Administração de Medicamentos , Exposição por Inalação , Ratos , Ratos Sprague-Dawley
7.
Toxicol Appl Pharmacol ; 356: 54-64, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012374

RESUMO

The number of workers potentially exposed to nanoparticles (NPs) during industrial processes is increasing, although the toxicological properties of these compounds still need to be fully characterized. As NPs may be aerosolized during industrial processes, inhalation represents their main route of occupational exposure. Here, the short- and long-term pulmonary toxicological properties of titanium dioxide were studied, using conventional and molecular toxicological approaches. Fischer 344 rats were exposed to 10 mg/m3 of a TiO2 nanostructured aerosol (NSA) by nose-only inhalation for 6 h/day, 5 days/week for 4 weeks. Lung samples were collected up to 180 post-exposure days. Biochemical and cytological analyses of bronchoalveolar lavage (BAL) showed a strong inflammatory response up to 3 post-exposure days, which decreased overtime. In addition, gene expression profiling revealed overexpression of genes involved in inflammation that was maintained 6 months after the end of exposure (long-term response). Genes involved in oxidative stress and vascular changes were also up-regulated. Long-term response was characterized by persistent altered expression of a number of genes up to 180 post-exposure days, despite the absence of significant histopathological changes. The physiopathological consequences of these changes are not fully understood, but they should raise concerns about the long-term pulmonary effects of inhaled biopersistent NPs such as TiO2.


Assuntos
Perfilação da Expressão Gênica , Pulmão/patologia , Nanoestruturas/toxicidade , Titânio/toxicidade , Aerossóis , Animais , Vasos Sanguíneos/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar , Regulação da Expressão Gênica/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Linfonodos/patologia , Masculino , Análise em Microsséries , Estresse Oxidativo/genética , Ratos , Ratos Endogâmicos F344 , Titânio/administração & dosagem
8.
Neurotoxicology ; 67: 270-278, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29928918

RESUMO

Chronic occupational exposure to carbon disulfide (CS2) has debilitating motor and sensory effects in humans, which can increase the risk of falls. Although no mention of vestibulotoxic effects is contained in the literature, epidemiological and experimental data suggest that CS2 could cause low-frequency hearing loss when associated with noise exposure. Low-frequency noise might also perturb the peripheral balance receptor through an as-yet unclear mechanism. Here, we studied how exposure to a low-frequency noise combined with 250-ppm CS2 affected balance in rats. Vestibular function was tested based on post-rotary nystagmus recorded by a video-oculography system. These measurements were completed by behavioral tests and analysis of the cerebellum to measure expression levels for gene expression associated with neurotoxicity. Assays were performed prior to and following a 4-week exposure, and again after a 4-week recovery period. Functional measurements were completed by histological analyses of the peripheral organs.Nystagmus was unaltered by exposure to noise alone, while CS2 alone caused a moderate 19% decrease of the saccade number. In contrast, coexposure to 250-ppm CS2 and low-frequency noise decreased both saccade number and duration by 33% and 34%, respectively. After four weeks, recovery was only partial but measures were not significantly different from pre-exposure values. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis of cerebellar tissue revealed a slight but significant modification in expression levels for two genes linked to neurotoxicity in CS2-exposed animals. However, neither histopathological changes to the peripheral receptor nor behavioral differences were observed. Based on all these results, we propose that the effects of CS2 were due to reversible neurochemical disturbance of the efferent pathways managing post-rotatory nystagmus. Because the nervous structures involving the vestibular function appear particularly sensitive to CS2, post-rotary nystagmus could be used as an early, non-invasive measurement to diagnose CS2 intoxication as part of an occupational conservation program.


Assuntos
Estimulação Acústica/efeitos adversos , Dissulfeto de Carbono/toxicidade , Ruído/efeitos adversos , Vestíbulo do Labirinto/efeitos dos fármacos , Vestíbulo do Labirinto/fisiologia , Animais , Dissulfeto de Carbono/administração & dosagem , Feminino , Ruído/prevenção & controle , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/prevenção & controle , Ratos , Ratos Long-Evans , Vestíbulo do Labirinto/patologia
9.
Xenobiotica ; 48(7): 684-694, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28783416

RESUMO

1. Multiple exposures are ubiquitous in industrial environments. In this article, we highlight the risks faced by workers and complete the data available on the metabolic impact of a common mixture: toluene (TOL) and methylethylketone (MEK). 2. Rats were exposed by inhalation under controlled conditions either to each solvent individually, or to mixtures of the two. How the interaction between the two solvents affected their fate in the blood and brain, their main relevant urinary metabolites (o-cresol, benzylmercapturic acid for TOL and 2,3-butanediols for MEK) and their hepatic metabolism were investigated. 3. Although the cytochrome P450 concentration was unchanged, and the activities of CYP1A2 and CYP2E1 isoforms were not additively or synergistically induced by co-exposure, TOL metabolism was inhibited by the presence of MEK (and vice versa). Depending on the relative proportions of each compound in the mixture, this sometimes resulted in a large increase in blood and brain concentrations. Apart from extreme cases (unbalanced mixtures), the amount of o-cresol and benzylmercapturic acid (and to a lesser extent 2,3-butanediols) excreted were proportional to the blood solvent concentrations. 4. In a co-exposure context, ortho-cresol and benzylmercapturic acid can be used as urinary biomarkers in biomonitoring for employees to relatively accurately assess TOL exposure.


Assuntos
Butanonas/metabolismo , Butanonas/toxicidade , Exposição por Inalação , Tolueno/metabolismo , Tolueno/toxicidade , Animais , Bioensaio , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Butanonas/sangue , Butanonas/urina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos Endogâmicos BN , Tolueno/sangue , Tolueno/urina
10.
Drug Chem Toxicol ; 41(1): 42-50, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28633598

RESUMO

Methylethylketone (MEK) is widely used in industry, often in combination with other compounds. Although nontoxic, it can make other chemicals harmful. This study investigates the fate of MEK in rat blood, brain and urine as well as its hepatic metabolism following inhalation over 1 month (at 20, 200 or 1400 ppm). MEK did not significantly accumulate in the organism: blood concentrations were similar after six-hour or 1-month inhalation periods, and brain concentrations only increased slightly after 1 month's exposure. Urinary excretion, based on the major metabolites, 2,3-butanediols (± and meso forms), accounted for less than 2.4% of the amount inhaled. 2-Butanol, 3-hydroxy-2-butanone and MEK itself were only detectable in urine in the highest concentration conditions investigated, when metabolic saturation occurred. Although MEK exposure did not alter the total cytochrome P450 concentration, it induced activation of both CYP1A2 and CYP2E1 enzymes. In addition, the liver glutathione concentration (reduced and oxidized forms) decreased, as did glutathione S-transferase (GST) activity (at exposure levels over 200 ppm). These metabolic data could be useful for pharmacokinetic model development and/or verification and suggest the ability of MEK to influence the metabolism (and potentiate the toxicity) of other substances.


Assuntos
Butanonas/farmacocinética , Acetoína/urina , Administração por Inalação , Animais , Biotransformação , Encéfalo/metabolismo , Butanóis/urina , Butanonas/administração & dosagem , Butanonas/sangue , Butanonas/urina , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Ativação Enzimática , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Ratos Endogâmicos BN , Eliminação Renal , Distribuição Tecidual
11.
Neurotoxicology ; 62: 151-161, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28655499

RESUMO

Carbon disulfide (CS2) is used in industry; it has been shown to have neurotoxic effects, causing central and distal axonopathies.However, it is not considered cochleotoxic as it does not affect hair cells in the organ of Corti, and the only auditory effects reported in the literature were confined to the low-frequency region. No reports on the effects of combined exposure to low-frequency noise and CS2 have been published to date. This article focuses on the effects on rat hearing of combined exposure to noise with increasing concentrations of CS2 (0, 63,250, and 500ppm, 6h per day, 5 days per week, for 4 weeks). The noise used was a low-frequency noise ranging from 0.5 to 2kHz at an intensity of 106dB SPL. Auditory function was tested using distortion product oto-acoustic emissions, which mainly reflects the cochlear performances. Exposure to noise alone caused an auditory deficit in a frequency area ranging from 3.6 to 6 kHz. The damaged area was approximately one octave (6kHz) above the highest frequency of the exposure noise (2.8kHz); it was a little wider than expected based on the noise spectrum.Consequently, since maximum hearing sensitivity is located around 8kHz in rats, low-frequency noise exposure can affect the cochlear regions detecting mid-range frequencies. Co-exposure to CS2 (250-ppm and over) and noise increased the extent of the damaged frequency window since a significant auditory deficit was measured at 9.6kHz in these conditions.Moreover, the significance at 9.6kHz increased with the solvent concentrations. Histological data showed that neither hair cells nor ganglion cells were damaged by CS2. This discrepancy between functional and histological data is discussed. Like most aromatic solvents, carbon disulfide should be considered as a key parameter in hearing conservation régulations.


Assuntos
Dissulfeto de Carbono/toxicidade , Audição/efeitos dos fármacos , Audição/efeitos da radiação , Ruído/efeitos adversos , Estimulação Acústica , Análise de Variância , Animais , Dissulfeto de Carbono/sangue , Relação Dose-Resposta à Radiação , Feminino , Testes Auditivos , Microscopia de Força Atômica , Miosinas/metabolismo , Órgão Espiral/efeitos dos fármacos , Órgão Espiral/metabolismo , Órgão Espiral/efeitos da radiação , Órgão Espiral/ultraestrutura , Ratos , Ratos Wistar , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/efeitos da radiação , Gânglio Espiral da Cóclea/ultraestrutura , Tiazolidinas/urina , Fatores de Tempo
12.
Neurotoxicology ; 59: 79-87, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28189717

RESUMO

Occupational noise can damage workers' hearing, and the phenomenon is even more dangerous when noise is associated with an ototoxic solvent. Aromatic solvents are known to provoke chemical-induced hearing loss, but little is known about the effects on hearing of carbon disulfide (CS2) when combined with noise. Co-exposure to CS2 and noise may have a harmful effect on hearing, but the mechanisms involved are not well understood. For instance, CS2 is not thought to have a cochleotoxic effect, but rather it is thought to cause retrocochlear hearing impairment. In other words, CS2 could have a distal neuropathic effect on the auditory pathway. However, a possible pharmacological effect of CS2 on the central nervous system (CNS) has never been mentioned in the literature. The aim of this study was to assess, in rats, the effects of a noise (continuous vs. impulse), associated with a low concentration of CS2 [(short-term threshold limit value) x 10 as a safety factor] on the peripheral auditory receptor. The noise, whatever its nature, was an octave band noise centered at 8kHz, and the 250-ppm CS2 exposure lasted 15min per hour, 6h per day, for 5 consecutive days. The impact of the different experimental conditions on hearing loss was assessed using distortion product oto-acoustic emissions and histological analyses. Although the LEX,8h (8-h time-weighted average exposure) for the impulse noise was lower (84dB SPL) than that for the continuous noise (89dB SPL), it appeared more damaging to the organ of Corti, in particular to the outer hair cells. CS2 exposure alone did not have any effect on the organ of Corti, but co-exposure to continuous noise with CS2 was less damaging than exposure to continuous noise alone. In contrast, the cochleo-traumatic effects of impulse noise were significantly enhanced by co-exposure to CS2. Therefore, CS2 can clearly modulate the middle-ear reflex function. In fact, CS2 may have two distinct effects: firstly, it has a pharmacological effect on the CNS, modifying the trigger of the acoustic reflex; and secondly, it can make the organ of Corti more susceptible to impulse noise. The pharmacological effects on the CNS and the effects of CS2 on the organ of Corti are discussed to try to explain the overall effect of the solvent on hearing. Once again, the results reported in this article show that the temporal structure (continuous vs. impulse) of noise should be taken into consideration as a key parameter when establishing hearing conservation regulations.


Assuntos
Dissulfeto de Carbono/farmacologia , Perda Auditiva/etiologia , Ruído/efeitos adversos , Órgão Espiral/efeitos dos fármacos , Solventes/efeitos adversos , Estimulação Acústica , Análise de Variância , Animais , Limiar Auditivo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Microscopia Eletrônica de Varredura , Órgão Espiral/patologia , Órgão Espiral/ultraestrutura , Emissões Otoacústicas Espontâneas/efeitos dos fármacos , Emissões Otoacústicas Espontâneas/fisiologia , Psicoacústica , Ratos , Ratos Long-Evans , Fatores de Tempo
13.
Neurotoxicology ; 57: 13-21, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27565678

RESUMO

Some volatile aromatic solvents have similar or opposite effects to anesthetics in the central nervous system. Like for anesthetics, the mechanisms of action involved are currently the subject of debate. This paper presents an in vivo study to determine whether direct binding or effects on membrane fluidity best explain how solvents counterbalance anesthesia's depression of the middle-ear reflex (MER). Rats were anesthetized with a mixture of ketamine and xylazine while also exposed to solvent vapors (toluene, ethylbenzene, or one of the three xylene isomers) and the amplitude of their MER was monitored. The depth of anesthesia was standardized based on the magnitude of the contraction of the muscles involved in the MER, determined by measuring cubic distortion product oto-acoustic emissions (DPOAEs) while triggering the bilateral reflex with contralateral acoustic stimulation. The effects of the aromatic solvents were quantified based on variations in the amplitude of the DPOAEs. The amplitude of the alteration to the MER measured in anesthetized rats did not correlate with solvent lipophilocity (as indicated by logKow values). Results obtained with the three xylene isomers indicated that the positions of two methyl groups around the benzene ring played a determinant role in solvent/neuronal cell interaction. Additionally, Solid-state Nuclear Magnetic Resonance (NMR) spectra for brain microsomes confirmed that brain lipid fluidity was unaffected by solvent exposure, even after three days (6h/day) at an extremely high concentration (3000ppm). Therefore, aromatic solvents appear to act directly on the neuroreceptors involved in the acoustic reflex circuit, rather than on membrane fluidity. The affinity of this interaction is determined by stereospecific parameters rather than lipophilocity.


Assuntos
Orelha Média/fisiologia , Fluidez de Membrana/efeitos dos fármacos , Reflexo Acústico/efeitos dos fármacos , Solventes/farmacologia , Estimulação Acústica , Animais , Encéfalo/metabolismo , Orelha Média/efeitos dos fármacos , Lateralidade Funcional/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Masculino , Fluidez de Membrana/fisiologia , Emissões Otoacústicas Espontâneas/efeitos dos fármacos , Ratos , Reflexo Acústico/fisiologia , Solventes/metabolismo , Tolueno/farmacologia , Trítio/farmacocinética
14.
Xenobiotica ; 44(3): 217-28, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24015909

RESUMO

1. Toluene (TOL) is widely used in industry. Occupational exposure to TOL is commonly assessed using TOL in blood, hippuric acid and ortho-cresol. Levels of these biomarkers may depend on factors potentially interfering with TOL biotransformation, such as the presence of other solvents in the workplace. Mercapturic acids (MAs) could be an alternative to the "traditional" TOL biomarkers. 2. This study aims (1) to investigate in rat the effects of an exposure to vapours mixtures on the TOL metabolism, and (2) to assess how well MAs performed in these contexts compared to the traditional TOL biomarkers. 3. Rats were exposed by inhalation to binary mixtures of TOL with n-butanol (BuOH), ethyl acetate (EtAc), methyl ethyl ketone (MEK) or xylenes (XYLs); biological exposure indicators were then measured. 4. Depending on the compounds in the mixture and their concentrations, TOL metabolism was accelerated (with BuOH), unchanged (with EtAc) or inhibited (with XYLs and MEK). Inhibition leads to an increase in blood TOL concentrations, even at authorized atmospheric concentrations, which may potentiate the effect of TOL. 5. MAs excretions are little affected by coexposure scenarios, their levels correlating well with atmospheric TOL levels. They could thus be suitable bioindicators of atmospheric TOL exposure.


Assuntos
Biomarcadores/sangue , Exposição Ocupacional/análise , Tolueno/metabolismo , 1-Butanol , Acetatos , Acetilcisteína/sangue , Análise de Variância , Animais , Butanonas , Cresóis/sangue , Relação Dose-Resposta a Droga , Hipuratos/sangue , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Tolueno/sangue , Tolueno/química , Xilenos
15.
PLoS One ; 8(8): e71413, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977039

RESUMO

Fluorene is one of the most abundant polycyclic aromatic hydrocarbons in air and may contribute to the neurobehavioral alterations induced by the environmental exposure of humans to PAHs. Since no data are available on fluorene neurotoxicity, this study was conducted in adult rats to assess the behavioral toxicity of repeated fluorene inhalation exposure. Male rats (n = 18/group) were exposed nose-only to 1.5 or 150 ppb of fluorene 6 hours/day for 14 consecutive days, whereas the control animals were exposed to non-contaminated air. At the end of the exposure, animals were tested for activity and anxiety in an open-field and in an elevated-plus maze, for short-term memory in a Y-maze, and for spatial learning in an eight-arm maze. The results showed that the locomotor activity and the learning performances of the animals were unaffected by fluorene. In parallel, the fluorene-exposed rats showed a lower level of anxiety than controls in the open-field, but not in the elevated-plus maze, which is probably due to a possible difference in the aversive feature of the two mazes. In the same animals, increasing blood and brain levels of fluorene monohydroxylated metabolites (especially the 2-OH fluorene) were detected at both concentrations (1.5 and 150 ppb), demonstrating the exposure of the animals to the pollutant and showing the ability of this compound to be metabolized and to reach the cerebral compartment. The present study highlights the possibility for a 14-day fluorene exposure to induce some specific anxiety-related behavioral disturbances, and argues in favor of the susceptibility of the adult brain when exposed to volatile fluorene.


Assuntos
Envelhecimento/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Comportamento Animal/efeitos dos fármacos , Fluorenos/toxicidade , Exposição por Inalação , Neurotoxinas/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Envelhecimento/patologia , Animais , Ansiedade/patologia , Atmosfera/química , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Fluorenos/sangue , Hidroxilação , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/sangue , Ratos , Ratos Wistar , Restrição Física , Estresse Psicológico/patologia
16.
Xenobiotica ; 43(8): 651-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23278281

RESUMO

1. Toluene (TOL) is a neurotoxic, ototoxic and reprotoxic solvent which is metabolized via the glutathione pathway, producing benzylmercapturic, o-, m- and p-toluylmercapturic acids (MAs). These metabolites could be useful as biomarkers of TOL exposure. 2. The aims of this study were (1) to provide data on MAs excretion in rat urine following TOL exposure by inhalation, (2) to compare them to data from traditional TOL biomarkers, i.e. TOL in blood (Tol-B), and urinary hippuric acid (HA) and o-cresol (oCre) and (3) to establish a relationship between these different indicators and the airborne TOL concentration (Tol-A). 3. Sprague-Dawley rats were exposed to a range of TOL concentrations. Blood and urine were collected and analyzed to determine biomarker levels. 4. Levels of the four MAs correlate strongly with Tol-A (comparable to the correlation with Tol-B). 5. MAs are thus clearly superior to oCre and HA as potential markers of exposure to TOL.


Assuntos
Acetilcisteína/sangue , Acetilcisteína/urina , Cresóis/urina , Exposição Ambiental/análise , Hipuratos/urina , Tolueno/sangue , Acetilcisteína/química , Poluição do Ar/análise , Animais , Biomarcadores/sangue , Biomarcadores/urina , Humanos , Isomerismo , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Análise de Regressão , Tolueno/química
17.
Neurotoxicol Teratol ; 35: 1-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23183362

RESUMO

Toluene (Tol) is an organic solvent widely used in the industry. It is also abused as an inhaled solvent, and can have deleterious effects on hearing. Recently, it was demonstrated that Tol has both anticholinergic and antiglutamatergic effects, and that it also inhibits voltage-dependent Ca(2+) channels. This paper describes a study of the effects of inhaled Tol on rats anesthetized with isoflurane, pentobarbital, or a mixture of ketamine/xylazine. Hearing was tested using distortion product oto-acoustic emissions (DPOAEs) associated with a contralateral noise to evaluate contraction of the middle-ear muscles. This allowed us to assess the interactions between the effects of Tol and anesthesia on the central nervous system (CNS). Although both anesthetics and Tol are known to inhibit the middle-ear acoustic reflex, our data indicated that inhaled Tol counterbalances the effects of anesthetic in a dose-dependent manner. In other terms, Tol can increase the amplitude of the middle-ear reflex in anesthetized rats, whatever the nature of the anesthetic used. This indicates that inhaling Tol (a Ca(2+)-channel-blocking drug) modifies the potency of anesthesia, and thereby the amplitude of the middle-ear reflex.


Assuntos
Anestésicos/farmacologia , Orelha Média/efeitos dos fármacos , Reflexo Acústico/efeitos dos fármacos , Solventes/administração & dosagem , Tolueno/administração & dosagem , Estimulação Acústica , Acústica , Administração por Inalação , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Eletrodos Implantados , Eletromiografia , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia , Masculino , Emissões Otoacústicas Espontâneas/efeitos dos fármacos , Ratos , Solventes/metabolismo , Tolueno/metabolismo
18.
Neurotoxicology ; 35: 71-83, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23270871

RESUMO

The mechanisms of action involved in the neurotoxicity of solvents are poorly understood. In vitro studies have suggested that the effects of some solvents might be due to the formation of reactive oxygen species (ROS). This study assesses hydroxyl radical (OH) generation and measures malondialdehyde (MDA) levels in the cerebral tissue of rats exposed to six solvents (n-hexane, n-octane, toluene, n-butylbenzene, cyclohexane and 1,2,4-trimethylcyclohexane). Three of these solvents have been shown to generate ROS in studies carried out in vitro on granular cell cultures from rat cerebellum. We assessed OH production by quantifying the rate of formation of 3,4-dihydroxybenzoic acid using a trapping agent, 4-hydroxybenzoic acid, infused via the microdialysis probe, into the prefrontal cortex of rats exposed intraperitoneally to the solvents. Extracellular MDA was quantified in microdialysates collected from the prefrontal cortex of rats exposed, 6h/day for ten days, to 1000ppm of the solvents (except for n-butylbenzene, generated at 830ppm) in inhalation chambers. Tissue levels of free and total MDA were measured in different brain structures for rats acutely (intraperitoneal route) and sub-acutely (inhalation) exposed to solvents. None of the six solvents studied increased the production of hydroxyl radicals in the prefrontal cortex after acute administration. Nor did they increase extracellular or tissue levels of MDA after 10 days' inhalation exposure. On the other hand, a decrease in the concentrations of free MDA in brain structures was observed after acute administration of n-hexane, 1,2,4-trimethylcyclohexane, toluene and n-butylbenzene. Therefore, data of this study carried out in vivo did not confirm observations made in vitro on cell cultures.


Assuntos
Encéfalo/efeitos dos fármacos , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Solventes/toxicidade , Animais , Derivados de Benzeno/toxicidade , Encéfalo/metabolismo , Encéfalo/patologia , Cicloexanos/toxicidade , Hexanos/toxicidade , Radical Hidroxila/metabolismo , Exposição por Inalação , Injeções Intraperitoneais , Masculino , Malondialdeído/metabolismo , Microdiálise , Octanos/toxicidade , Oxidantes/administração & dosagem , Ratos , Ratos Sprague-Dawley , Solventes/administração & dosagem , Fatores de Tempo , Tolueno/toxicidade
19.
Toxicol Lett ; 211(3): 211-9, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22507543

RESUMO

The cytogenetic alterations in leukocytes and the increased risk for leukemia, lymphoma, or all lymphohematopoietic cancer observed in workers occupationally exposed to styrene have been associated with its hepatic metabolisation into styrene-7,8-oxide, an epoxide which can induce DNA damages. However, it has been observed that styrene-7,8-oxide was also found in the atmosphere of reinforced plastic industries where large amounts of styrene are used. Since the main route of exposure to these compounds is inhalation, in order to gain new insights regarding their systemic genotoxicity, Fisher 344 male rats were exposed in full-body inhalation chambers, 6 h/day, 5 days/week for 4 weeks to styrene-7,8-oxide (25, 50, and 75 ppm) or styrene (75, 300, and 1000 ppm). Then, the induction of micronuclei in circulating reticulocytes and DNA strand breaks in leukocytes using the comet assay was studied at the end of the 3rd and 20th days of exposure. Our results showed that neither styrene nor styrene-7,8-oxide induced a significant increase of the micronucleus frequency in reticulocytes or DNA strand breaks in white blood cells. However, in the presence of the formamidopyridine DNA glycosylase, an enzyme able to recognize and excise DNA at the level of some oxidized DNA bases, a significant increase of DNA damages was observed at the end of the 3rd day of treatment in leukocytes from rats exposed to styrene but not to styrene-7,8-oxide. This experimental design helped to gather new information regarding the systemic genotoxicity of these two chemicals and may be valuable for the risk assessment associated with an occupational exposure to these molecules.


Assuntos
Compostos de Epóxi/toxicidade , Estireno/toxicidade , Administração por Inalação , Animais , Câmaras de Exposição Atmosférica , Contagem de Células Sanguíneas , Ensaio Cometa , Quebras de DNA/efeitos dos fármacos , DNA Glicosilases/metabolismo , Compostos de Epóxi/sangue , Eritrócitos/efeitos dos fármacos , Eritrócitos/ultraestrutura , Masculino , Testes para Micronúcleos , Mutagênicos/toxicidade , Ratos , Ratos Endogâmicos F344 , Reticulócitos/efeitos dos fármacos , Reticulócitos/ultraestrutura , Estireno/sangue
20.
J Anal Toxicol ; 36(5): 312-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492963

RESUMO

A convenient and reliable gas chromatographic method was developed for the simultaneous determination of six aromatic acid metabolites of styrene and styrene-oxide in rat urine; i.e., benzoic (BA), phenylacetic (PAA), mandelic (MA), phenylglyoxylic (PGA), hippuric (HA) and phenylaceturic (PAUA) acids. The method involves a one-pot esterification-extraction procedure, performed directly on urine without prior treatment. Analyses were performed on a RTX-1701 capillary column and the recovered isopropyl esters derivatives were detected by flame ionization detection. The analytical method was validated for selectivity, linearity, detection and quantification limits, recovery and intra-day and inter-day precisions. Calibration curves showed linearity in the range of 8-800 mg/L, except for HA and PAUA (40-800 mg/L). Limits of detection were between 0.2 (PPA) and 7.0 (PAUA) mg/L. The intra-day precisions determined at three concentrations levels were less than 5% for BA, PAA, MA and PGA and 9% for HA and PAUA, respectively. The corresponding mean inter-day precisions for these two groups were 8 and 16%, respectively. The method was successfully applied to quantitatively analyze styrene, styrene-oxide, ethylbenzene and toluene metabolites in urine samples from rats exposed by inhalation to these compounds at levels close to the occupational threshold limit values. Provided that this method can be transposed to human urine, it could have applications as part of biological monitoring for workers exposed to styrene or related compounds.


Assuntos
Ácidos Carbocíclicos/urina , Compostos de Epóxi/urina , Estireno/urina , Administração por Inalação , Animais , Ácido Benzoico/urina , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacocinética , Ionização de Chama/métodos , Glioxilatos/urina , Hipuratos/urina , Exposição por Inalação , Limite de Detecção , Masculino , Ácidos Mandélicos/urina , Fenilacetatos/urina , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Estireno/administração & dosagem , Estireno/farmacocinética , Urinálise/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...