Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38781517

RESUMO

OBJECTIVES: Juvenile Idiopathic Arthritis (JIA) is the most common rheumatic disease of childhood; the pathogenesis is associated with T cell activation. T cell activation can be counter-balanced by signals generated by inhibitory receptors (IRs) such as CTLA-4, PD-1, LAG-3, and TIM-3. Here, we identify the role of IRs in the pathogenesis of different JIA subtypes. METHODS: In total, we included 67 oligoarticular JIA, 12 IgM-RF negative polyarticular JIA, 17 enthesitis related arthritis, 11 systemic JIA patients and 10 healthy controls. We collected plasma (and synovial fluid) samples from the patients either at the onset or during a flare of their disease. We measured the soluble levels of co-IRs (IL-2Rα, 4-1BB, CD86, TGF-ß1, CTLA-4, PD-L1, PD-1, TIM-3, LAG- 3, Galectin-9) by cytometric bead array kits and their cellular expression (PD-1, CTLA-4, TIM-3, LAG-3) by flow cytometry. We compared the plasma levels and cellular expressions of different co-IRs within different JIA subgroups. RESULTS: The polyarticular-JIA group was different from the three other examined JIA subgroups, having higher levels of plasma sCTLA-4(p< 0.001), sPD-1(p< 0.05), and s4-1BB(p< 0.05) when compared with the other JIA subgroups and healthy controls. We analyzed the cellular surface expression of different co-IRs on the PBMCs of different JIA subtypes. Similar to plasma levels, both the percentage(p< 0.05) and the MFI (mean fluorescence intensity) (p< 0.01) of CTLA4 expression were higher in the poly-JIA subgroup. CONCLUSION: This is the first report studying the expression profile of different co-IRs in different subtypes of JIA. Polyarticular JIA patients had a different co-IR profile, having more CTLA-4, PD-1 and 4-1BB in their plasma than the other subtypes of JIA.

2.
Clin Rheumatol ; 43(1): 553-560, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37676588

RESUMO

OBJECTIVE: We aimed to investigate the plasma levels and cell surface expression of two checkpoint molecules, TIM-3 (T cell immunoglobulin and mucin domain-containing protein 3) and PD-1 (programmed cell death protein 1), in pediatric patients with chronic non-bacterial osteomyelitis (CNO). METHODS: Plasma samples of CNO patients were collected at diagnosis or during biologic agent treatment. Plasma levels of TIM-3 and PD-1 were measured using the sandwich enzyme-linked immunosorbent assay method, and the expression of the two immune checkpoint molecules on the cell surface was analyzed by isolating peripheral blood mononuclear cells by density gradient centrifugation technique. RESULTS: Twenty-seven patients with CNO (14 boys, 51.9%) and six healthy controls (3 boys, 50%) were enrolled in the study. There were no age differences between CNO patients and healthy controls (median age 14.5 vs. 13.5 years, respectively, p=0.762). Of the CNO patients, 18 were included at the time of diagnosis while 9 were receiving biologic treatment at enrollment. The median plasma PD-1 levels were significantly lower in the CNO group than in the healthy controls (p=0.011). However, no significant difference was found in the cellular expression of PD-1 and TIM-3 on CD3+CD4+ T cells in patients and healthy controls (p=0.083 and p=0.245, respectively). There was also no statistically significant difference in plasma TIM-3 levels of the patient and control groups (p=0.981). CONCLUSION: CNO is an autoinflammatory disease, and overall, our results suggest that T cell exhaustion may not be significant in CNO. Further research is needed to find out whether the immune checkpoints are mainly associated with autoimmunity but not autoinflammation. Key Points • The median plasma PD-1 levels were significantly lower in the CNO group than in the healthy controls. • No significant difference was found in the cellular expression of PD-1 and TIM-3 on CD3+CD4+ T cells in patients and healthy controls. • Our results suggest that T cell exhaustion may not be significant in CNO pathogenesis.


Assuntos
Produtos Biológicos , Proteínas de Checkpoint Imunológico , Masculino , Humanos , Criança , Adolescente , Proteínas de Checkpoint Imunológico/metabolismo , Receptor Celular 2 do Vírus da Hepatite A , Receptor de Morte Celular Programada 1 , Leucócitos Mononucleares/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(44): e2311057120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37883440

RESUMO

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide is present at the C-terminus of more than a quarter of clients or their adaptors. When present, this targeting complex recognition (TCR) motif is necessary and sufficient for binding to the CTC in vitro and for directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR signal enables engineering of cluster maturation on a nonnative protein via recruitment of the CIA machinery. Our study advances our understanding of Fe-S protein maturation and paves the way for bioengineering novel pathways containing Fe-S enzymes.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Ferro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
4.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37292740

RESUMO

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide present at the C-terminus of clients is necessary and sufficient for binding to the CTC in vitro and directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR (target complex recognition) signal enables engineering of cluster maturation on a non-native protein via recruitment of the CIA machinery. Our study significantly advances our understanding of Fe-S protein maturation and paves the way for bioengineering applications.

5.
Cell Tissue Bank ; 21(2): 215-231, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32020424

RESUMO

This study aims to evaluate the CD146+ stem cells obtained from the human umbilical cord and their extracellular matrix proteins on in vitro Pseudomonas aeruginosa and Staphylococcus aureus biofilms to understand their possible antimicrobial activity. CD146+ stem cells were determined according to cell surface markers and differentiation capacity. Characterization of the decellularized matrix was done with DAPI, Masson's Trichrome staining and proteome analysis. Cell viability/proliferation of cells in co-cultures was evaluated by WST-1 and crystal-violet staining. The effects of cells and decellularized matrix proteins on biofilms were investigated on a drip flow biofilm reactor and their effects on gene expression were determined by RT-qPCR. We observed that CD146/105+ stem cells could differentiate adipogenically and decellularized matrix showed negative DAPI and positive collagen staining with Masson' s Trichrome. Proteome analysis of the decellularized matrix revealed some matrix components and growth factors. Although the decellularized matrix significantly reduced the cell counts of P. aeruginosa, no significant difference was observed for S. aureus cells in both groups. Supporting data was obtained from the gene expression results of P. aeruginosa with the significant down-regulation of rhlR and lasR. For S. aureus, icaADBC genes were significantly up-regulated when grown on the decellularized matrix.


Assuntos
Biofilmes/crescimento & desenvolvimento , Antígeno CD146/metabolismo , Matriz Extracelular/metabolismo , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Células-Tronco/citologia , Cordão Umbilical/citologia , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Técnicas de Cocultura , Proteínas da Matriz Extracelular/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Proteoma/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/ultraestrutura , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestrutura
6.
Adv Exp Med Biol ; 1212: 107-126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31065940

RESUMO

Skin is the main organ that covers the human body and acts as a protective barrier between the human body and the environment. Skin tissue as a stem cell source can be used for transplantation in therapeutic application in terms of its properties such as abundant, easy to access, high plasticity and high ability to regenerate. The immunological profile of these cells makes it a suitable resource for autologous and allogeneic applications. The lack of major histo-compatibility complex 1 is also advantageous in its use. Epidermal stem cells are the main stem cells in the skin and are suitable cells in tissue engineering studies for their important role in wound repair. In the last 30 years, many studies have been conducted to develop substitutions that mimic human skin. Stem cell-based skin substitutions have been developed to be used in clinical applications, to support the healing of acute and chronic wounds and as test systems for dermatological and pharmacological applications. In this chapter, tissue specific properties of epidermal stem cells, composition of their niche, regenerative approaches and repair of tissue degeneration have been examined.


Assuntos
Regeneração , Pele/citologia , Células-Tronco/citologia , Engenharia Tecidual , Humanos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...