Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272688

RESUMO

Mixing ionic liquids is a suitable strategy to tailor properties, e.g., to reduce melting points. The present study aims to widen the application range of low-toxic choline-based ionic liquids by studying eight binary phase diagrams of six different choline carboxylates. Five of them show eutectic points with melting points dropping by 13 to 45 °C. The eutectic mixtures of choline acetate and choline 2-methylbutarate were found to melt at 45 °C, which represents a remarkable melting point depression compared to the pure compounds with melting points of 81 (choline acetate) and 90 °C (choline 2-methylbutarate), respectively. Besides melting points, the thermal stabilities of the choline salt mixtures were investigated to define the thermal operation range for potential practical applications of these mixtures. Typical decomposition temperatures were found between 165 and 207 °C, with choline lactate exhibiting the highest thermal stability.


Assuntos
Ânions/química , Colina/química , Líquidos Iônicos/química , Ácidos Carboxílicos/química , Temperatura de Transição
2.
Sci Total Environ ; 658: 1404-1415, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30678000

RESUMO

Power generation and other industries using solid fossil fuels like coal, lignite, oil shale and peat are responsible for producing large quantities of solid residues that are often chemically reactive and/or unstable and are disposed in holding ponds and deposition sites. Stability and long-term behaviour of such deposits are typically studied in short-term laboratory experiments that cannot describe nor predict long-term changes taking place in these materials. Here, we study long-term (>40 years) transformations, in highly alkaline conditions, of the Ca-rich ash deposit in Estonia composed of oil shale processing residues from the Eesti power plant. Detailed mineralogical, chemical and micromorphological analyses using X-ray diffraction, X-ray fluorescence, 29Si nuclear magnetic resonance, scanning electron microscopy and other methods were applied in order to identify the composition of the waste with a focus on formation and transformation of semicrystalline phases in the deposit. The results show progressive formation of calcium-silicate-hydrate (C-S-H) type phase at the expense of silicate minerals and amorphous glass phases with increasing depth and age of the sediments, from about 25% in the upper part of the depository to over 60% in the oldest-deepest part. This demonstrates that over time the high alkalinity of the ash is responsible for initiating natural alkali-activation. The formation of C-S-H-type phases increases the mechanical strength of the sediment and ensures long-term stability of waste deposits. These findings may encourage the use of these ashes in binder or other construction material production or as construction aggregates.

3.
Eur J Pharm Sci ; 121: 260-268, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-29883725

RESUMO

The present study introduces a modified melt-electrospinning (MES) method for fabricating the melt-electrospun fibers (MSFs) of a poorly water-soluble drug and carrier polymer. The MES of poorly water-soluble model drug indomethacin (IND) and hydrophilic carrier polymer, Soluplus® (SOL) were prepared at a 1:3 drug-polymer weight ratio. Water was used as an external plasticizer to regulate a MES processing temperature and to improve fiber formation. The fiber size, surface morphology, physical solid state, drug-polymer (carrier) interactions, thermal and chemical stability and dissolution behavior of MSFs were investigated. Solid state nuclear magnetic resonance spectroscopy (NMR) was used to measure T1(1H), and the domain size of IND in MSFs (25-100 nm) was calculated from these results. Solid-state and thermal analysis confirmed the presence of amorphous solid dispersions of IND and SOL. IND was found to be chemically stable during an entire MES process. Only small drug content variability of different MSF batches was detected with high performace liquid chromatography (HPLC). Given findings were verified with the liquid NMR spectroscopy. The dissolution of MSFs was significantly faster than that of physical mixtures (PMs) or pure drug. The enhanced dissolution of MSFs was caused by high surface area, amorphous state of the drug and solubilizing properties of the carrier polymer (SOL).


Assuntos
Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Indometacina/química , Polietilenoglicóis/química , Polivinil/química , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...