Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 779196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495647

RESUMO

Sanitizing the water sources of local communities is important to control the spread of microbial resistance genes, especially those for water-borne illnesses. The activities of antibiotic resistance gene (ARG)-host pathogens pose a threat to public health, and it has been estimated that the infection will lead up to 10 million deaths globally by the year 2050. Hence, in this study, we aim to analyze the efficiency of our municipal wastewater treatment plant (WWTP) process in producing pathogen-free water by investigating the microbial composition between influent and effluent water sites. Shotgun metagenomics sequencing using the Illumina platform was performed on the influent and effluent samples of six different WWTP sites located in Johore, Malaysia. After raw data pre-processing, the non-redundant contigs library was then aligned against BLASTP for taxonomy profiling and the Comprehensive Antibiotic Resistance Database for ARG annotation. Interestingly, the alpha-diversity result reported that effluent site samples showed higher abundance and diverse heterogeneity compared to the influent site. The principal component analysis (PCA) and non-metric multidimensional scaling (NMDS) plots also suggested that effluent sites showed high variation in the genetic material due to loosely clustered sample plots, as compared to the tightly clustered influent samples. This study has successfully identified the top three abundant phyla in influent-Proteobacteria, Firmicutes, and Bacteroidetes-and effluent-Proteobacteria, Actinobacteria, and Bacteroidetes-water. Despite the overlap within the top three abundant phyla in influent and effluent sites (Proteobacteria and Bacteroidetes), the ARG composition heat map and drug class phenotype plot bar exhibits a general trend of a downward shift, showing the efficiency of WWTP in reducing opportunistic pathogens. Overall, it was demonstrated that our municipal WWTP efficiently eliminated pathogenic microbes from the influent water before its total discharge to the environment, though not with the total elimination of microorganisms. This metagenomics study allowed for an examination of our water source and showed the potential interaction of species and ARGs residing in the influent and effluent environment. Both microbial profile structure and co-occurrence network analysis provide integrated understanding regarding the diversity of microorganisms and interactions for future advanced water sanitation treatments.

2.
Acta Virol ; 50(1): 45-51, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16599185

RESUMO

Three isolates of Infectious bursal disease virus (IBDV), designated UPM04178, UPM04190 and UPM04238, were obtained from severe outbreaks of infectious bursal disease (IBD) in Malaysia in 2004. The hypervariable region (HPVR) of VP2 gene of these isolates was sequenced. The obtained sequences were compared with those of other isolates. The highest similarity (98%) concerning both nucleotide and amino acid sequences was found to very virulent IBDV (vvIBDV) strains. Phylogenetic analysis revealed clustering of the three isolates with vvIBDV strains. Evolutionary relatedness of the three isolates to vvIBDV strains was demonstrated by three phylogenetic methods: bootstrap values of 100%, 95% and 90% for nucleotide sequences and those of 58%, 86% and 96% for amino acid sequences were obtained by the distance, maximum parsimony and maximum likehood methods, respectively. It is concluded that UPM04178, UPM04190 and UPM04238 are vvIBDV isolates of serotype 1, which originate from a common ancestor of IBDV strains present in Malaysia.


Assuntos
Vírus da Doença Infecciosa da Bursa/genética , Animais , Galinhas , Vírus da Doença Infecciosa da Bursa/classificação , Vírus da Doença Infecciosa da Bursa/isolamento & purificação , Mutação , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA