Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e19804, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809739

RESUMO

The short-lived tropical squall lines could trigger weather-related hazards to the northern part of the Indonesia Maritime Continent (IMC), such as Sumatra and Kalimantan. Herein, we investigated the rare propagation event of the long-lived Sumatra squall line associated with a severe storm surge that induced coastal inundation in Java-Bali with devastating impacts from 22 May-2 June 2020. With a comprehensive approach combining observational, numerical, and analytical studies, for the first time, we proposed the possible mechanism related to the long-lived squall line over the IMC, which represents the largest equatorial tropical region with the most complicated air-sea interaction area in the world. Our findings suggest that the long-lived squall line related to the supercell-like thunderstorm initiated from multicell over central Sumatra on May 20, 2020, continuously propagated southeastward until several days later reached Bali. The near-quasi steady convective line has 6 hours of time travel from central Sumatra to west Java. The supercell-like rapidly develops from multicell with a deep convective updraft under the strong and fast cold pool (∼13.8 m s-1). The further southeastward propagation of squall line with broken line type seems reinforced by low-level moist transport from the Java Sea. This study also suggested that this unusual event of a long-lived squall line might occur more frequently in the warming upper ocean in the IMC.

2.
Environ Sustain (Singap) ; 4(3): 569-578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38624952

RESUMO

On March 2, 2020, the first Coronavirus Disease (COVID-19) case was reported in Jakarta, Indonesia. One and a half months later (15/05/2020), the cumulative number of infection cases was 16,496, with a total of 1076 mortalities. This study investigates the possible role of weather in the early cases of COVID-19 in six selected cities in Indonesia. Daily temperature and relative humidity data from weather stations nearby in each city were collected from March 3 to April 30, 2020, corresponding with COVID-19 incidence. Correlation tests and regression analysis were performed to examine the association of those two data series. Moreover, we analyzed the distribution of COVID-19 referring the weather data to estimate the effective range of weather data supporting the COVID-19 incidence. Our result reveals that weather data is generally associated with COVID-19 incidence. The daily average temperature (T-ave) and relative humidity (RH) present significant positive and negative correlation with COVID-19 data, respectively. However, the correlation coefficients are weak, with the strongest correlations found at the 5-day lag, i.e., 0.37 (- 0.41) for T-ave (RH). The regression analysis consistently confirmed this relation. The distribution analysis reveals that most COVID-19 cases in Indonesia occurred in the daily temperature range of 25-31 °C and relative humidity of 74-92%. Our findings suggest that COVID-19 incidence in Indonesia has a weak association with weather conditions. Therefore, non-meteorological factors seem to play a more prominent role and should be given greater consideration in preventing the spread of COVID-19. Supplementary Information: The online version contains supplementary material available at 10.1007/s42398-021-00202-9.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...