Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 18, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310301

RESUMO

BACKGROUND: The widespread availability of antiretroviral therapy (ART) has dramatically reduced mortality and improved life expectancy for people living with HIV (PLWH). However, even with HIV-1 suppression, chronic immune activation and elevated inflammation persist and have been linked to a pro-inflammatory gut microbiome composition and compromised intestinal barrier integrity. PLWH in urban versus rural areas of sub-Saharan Africa experience differences in environmental factors that may impact the gut microbiome and immune system, in response to ART, yet this has not previously been investigated in these groups. To address this, we measured T cell activation/exhaustion/trafficking markers, plasma inflammatory markers, and fecal microbiome composition in PLWH and healthy participants recruited from an urban clinic in the city of Harare, Zimbabwe, and a district hospital that services surrounding rural villages. PLWH were either ART naïve at baseline and sampled again after 24 weeks of first-line ART and the antibiotic cotrimoxazole or were ART-experienced at both timepoints. RESULTS: Although expected reductions in the inflammatory marker IL-6, T-cell activation, and exhaustion were observed with ART-induced viral suppression, these changes were much more pronounced in the urban versus the rural area. Gut microbiome composition was the most highly altered from healthy controls in ART experienced PLWH, and characterized by both reduced alpha diversity and altered composition. However, gut microbiome composition showed a pronounced relationship with T cell activation and exhaustion in ART-naïve PLWH, suggesting a particularly significant role for the gut microbiome in disease progression in uncontrolled infection. Elevated immune exhaustion after 24 weeks of ART did correlate with both living in the rural location and a more Prevotella-rich/Bacteroides-poor microbiome type, suggesting a potential role for rural-associated microbiome differences or their co-variates in the muted improvements in immune exhaustion in the rural area. CONCLUSION: Successful ART was less effective at reducing gut microbiome-associated inflammation and T cell activation in PLWH in rural versus urban Zimbabwe, suggesting that individuals on ART in rural areas of Zimbabwe may be more vulnerable to co-morbidity related to sustained immune dysfunction in treated infection. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV , Humanos , Zimbábue , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Inflamação
2.
Res Sq ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693491

RESUMO

The widespread availability of antiretroviral therapy (ART) for people living with HIV (PLWH) has dramatically reduced mortality and improved life expectancy. However, even with suppression of HIV-1 replication, chronic immune activation and elevated inflammation persist. Chronic immune activation has been linked to a pro-inflammatory gut microbiome composition, exacerbated by compromised intestinal barrier integrity that occurs after HIV infection. Individuals living in urban versus rural areas of sub-Saharan Africa have differences in environmental factors such as water source or diet that may impact gut microbiome composition, yet immune phenotype and gut microbiome composition response to ART in PLWH living in rural versus urban areas of sub-Saharan Africa have not been compared. Here, we measured immune phenotypes and fecal microbiome composition in PLWH and healthy participants recruited from the urban Mabvuku polyclinic in the city of Harare, Zimbabwe and the Mutoko District hospital located in a district 146 km from Harare that services surrounding rural villages. PLWH were either ART naïve at baseline and sampled again after 24 weeks of treatment with efavirenz/lamivudine/tenofovir disoproxil fumarate (EFV/3TC/TDF) and the prophylactic antibiotic cotrimoxazole or were ART experienced at both timepoints. Although expected reductions in the inflammatory marker IL-6, T-cell activation, and exhaustion were observed in individuals who had suppressed HIV-1 with treatment, these changes were significant only when considering individuals in the urban and not the rural area. Gut microbiome composition showed more marked differences from healthy controls in the ART experienced compared to ART naïve cohort, and consistent longitudinal changes were also observed in ART naïve PLWH after 24 weeks of treatment, including a reduction in alpha diversity and altered composition. However, gut microbiome composition showed a more pronounced relationship with chronic immune activation and exhaustion phenotypes in the ART naïve compared to ART experienced PLWH, suggesting a particularly significant role for the gut microbiome in disease progression in uncontrolled infection.

3.
NPJ Biofilms Microbiomes ; 8(1): 15, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365681

RESUMO

Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea, and emerging evidence has linked dietary components with CDI pathogenesis, suggesting that dietary modulation may be an effective strategy for prevention. Here, we show that mice fed a high-fat/low-fiber "Western-type" diet (WD) had dramatically increased mortality in a murine model of antibiotic-induced CDI compared to a low-fat/low-fiber (LF/LF) diet and standard mouse chow controls. We found that the WD had a pro- C. difficile bile acid composition that was driven in part by higher levels of primary bile acids that are produced to digest fat, and a lower level of secondary bile acids that are produced by the gut microbiome. This lack of secondary bile acids was associated with a greater disturbance to the gut microbiome with antibiotics in both the WD and LF/LF diet compared to mouse chow. Mice fed the WD also had the highest level of toxin TcdA just prior to the onset of mortality, but not of TcdB or increased inflammation. These findings indicate that dietary intervention to decrease fat may complement previously proposed dietary intervention strategies to prevent CDI in high-risk individuals.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Animais , Antibacterianos/efeitos adversos , Clostridioides , Gorduras na Dieta , Camundongos
4.
Front Immunol ; 13: 1072720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605218

RESUMO

Introduction: People living with HIV infection (PLWH) exhibit elevated levels of gastrointestinal inflammation. Potential causes of this inflammation include HIV infection and associated immune dysfunction, sexual behaviors among men who have sex with men (MSM) and gut microbiome composition. Methods: To better understand the etiology of gastrointestinal inflammation we examined levels of 28 fecal soluble immune factors (sIFs) and the fecal microbiome in well-defined cohorts of HIV seronegative MSM (MSM-SN), MSM with untreated HIV infection (MSM-HIV) and MSM with HIV on anti-retroviral treatment (MSMART). Additionally, fecal solutes from these participants were used to stimulate T-84 colonic epithelial cells to assess barrier function. Results: Both MSM cohorts with HIV had elevated levels of fecal calprotectin, a clinically relevant marker of GI inflammation, and nine inflammatory fecal sIFs (GM-CSF, ICAM-1, IL-1ß, IL-12/23, IL-15, IL-16, TNF-ß, VCAM-1, and VEGF). Interestingly, four sIFs (GM-CSF, ICAM-1, IL-7 and IL-12/23) were significantly elevated in MSM-SN compared to seronegative male non-MSM. Conversely, IL-22 and IL-13, cytokines beneficial to gut health, were decreased in all MSM with HIV and MSM-SN respectively. Importantly, all of these sIFs significantly correlated with calprotectin, suggesting they play a role in GI inflammation. Principal coordinate analysis revealed clustering of fecal sIFs by MSM status and significant associations with microbiome composition. Additionally, fecal solutes from participants in the MSM-HIV cohort significantly decreased colonic transcellular fluid transport in vitro, compared to non-MSM-SN, and this decrease associated with overall sIF composition and increased concentrations of eight inflammatory sIFs in participants with HIV. Lastly, elevated levels of plasma, sCD14 and sCD163, directly correlated with decreased transcellular transport and microbiome composition respectively, indicating that sIFs and the gut microbiome are associated with, and potentially contribute to, bacterial translocation. Conclusion: Taken together, these data demonstrate that inflammatory sIFs are elevated in MSM, regardless of HIV infection status, and are associated with the gut microbiome and intestinal barrier function.


Assuntos
Infecções por HIV , Microbiota , Minorias Sexuais e de Gênero , Humanos , Masculino , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Molécula 1 de Adesão Intercelular , Homossexualidade Masculina , Fatores Imunológicos , Inflamação , Interleucina-12 , Complexo Antígeno L1 Leucocitário
5.
Gut Microbes ; 13(1): 1997292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34818131

RESUMO

Men who have sex with men (MSM), regardless of HIV infection status, have an intestinal microbiome that is compositionally distinct from men who have sex with women (MSW) and women. We recently showed HIV-negative MSM have elevated levels of intestinal CD4+ T cells expressing CCR5, a critical co-receptor for HIV. Whether elevated expression of CCR5 is driven by the altered gut microbiome composition in MSM has not been explored. Here we used in vitro stimulation of gut Lamina Propria Mononuclear Cells (LPMCs) with whole intact microbial cells isolated from stool to demonstrate that fecal bacterial communities (FBCs) from HIV-positive/negative MSM induced higher frequencies of CCR5+ CD4+ T cells compared to FBCs from HIV-negative MSW and women. To identify potential microbial drivers, we related the frequency of CCR5+ CD4+ T cells to the abundance of individual microbial taxa in rectal biopsy of HIV-positive/negative MSM and controls, and Holdemanella biformis was strongly associated with increased frequency of CCR5+ CD4+ T cells. We used in vitro stimulation of gut LPMCs with the type strain of H. biformis, a second strain of H.biformis and an isolate of the closely related Holdemanella porci , cultured from either a HIV-positive or a HIV-negative MSM stool. H. porci elevated the frequency of both CCR5+ CD4+ T cells and the ratio of TNF-α/IL-10 Genomic comparisons of the 3 Holdemanella isolates revealed unique cell wall and capsular components, which may be responsible for their differences in immunogenicity. These findings describe a novel mechanism potentially linking intestinal dysbiosis in MSM to HIV transmission and mucosal pathogenesis.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Firmicutes/imunologia , Microbioma Gastrointestinal/imunologia , Infecções por HIV/microbiologia , Homossexualidade Masculina , Mucosa Intestinal/imunologia , Receptores CCR5/metabolismo , Citocinas/metabolismo , Disbiose/imunologia , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Genoma Bacteriano/genética , Infecções por HIV/imunologia , Infecções por HIV/transmissão , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Minorias Sexuais e de Gênero
6.
mSystems ; 6(3)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006628

RESUMO

Poor metabolic health, characterized by insulin resistance and dyslipidemia, is higher in people living with HIV and has been linked with inflammation, antiretroviral therapy (ART) drugs, and ART-associated lipodystrophy (LD). Metabolic disease is associated with gut microbiome composition outside the context of HIV but has not been deeply explored in HIV infection or in high-risk men who have sex with men (HR-MSM), who have a highly altered gut microbiome composition. Furthermore, the contribution of increased bacterial translocation and associated systemic inflammation that has been described in HIV-positive and HR-MSM individuals has not been explored. We used a multiomic approach to explore relationships between impaired metabolic health, defined using fasting blood markers, gut microbes, immune phenotypes, and diet. Our cohort included ART-treated HIV-positive MSM with or without LD, untreated HIV-positive MSM, and HR-MSM. For HIV-positive MSM on ART, we further explored associations with the plasma metabolome. We found that elevated plasma lipopolysaccharide binding protein (LBP) was the most important predictor of impaired metabolic health and network analysis showed that LBP formed a hub joining correlated microbial and immune predictors of metabolic disease. Taken together, our results suggest the role of inflammatory processes linked with bacterial translocation and interaction with the gut microbiome in metabolic disease among HIV-positive and -negative MSM.IMPORTANCE The gut microbiome in people living with HIV (PLWH) is of interest since chronic infection often results in long-term comorbidities. Metabolic disease is prevalent in PLWH even in well-controlled infection and has been linked with the gut microbiome in previous studies, but little attention has been given to PLWH. Furthermore, integrated analyses that consider gut microbiome, together with diet, systemic immune activation, metabolites, and demographics, have been lacking. In a systems-level analysis of predictors of metabolic disease in PLWH and men who are at high risk of acquiring HIV, we found that increased lipopolysaccharide-binding protein, an inflammatory marker indicative of compromised intestinal barrier function, was associated with worse metabolic health. We also found impaired metabolic health associated with specific dietary components, gut microbes, and host and microbial metabolites. This study lays the framework for mechanistic studies aimed at targeting the microbiome to prevent or treat metabolic endotoxemia in HIV-infected individuals.

7.
Sci Rep ; 11(1): 7666, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828220

RESUMO

Multiple factors, such as immune disruption, prophylactic co-trimoxazole, and antiretroviral therapy, may influence the structure and function of the gut microbiome of children infected with HIV from birth. In order to understand whether HIV infection altered gut microbiome and to relate changes in microbiome structure and function to immune status, virological response and pediatric ART regimens, we characterized the gut microbiome of 87 HIV-infected and 82 non-exposed HIV-negative children from Yaounde, a cosmopolitan city in Cameroon. We found that children living with HIV had significantly lower alpha diversity in their gut microbiome and altered beta diversity that may not be related to CD4+ T cell count or viral load. There was an increased level of Akkermansia and Faecalibacterium genera and decreased level of Escherichia and other Gamma proteobacteria in children infected with HIV, among other differences. We noted an effect of ethnicity/geography on observed gut microbiome composition and that children on ritonavir-boosted protease inhibitor (PI/r)-based ART had gut microbiome composition that diverged more from HIV-negative controls compared to those on non-nucleoside reverse-transcriptase inhibitors-based ART. Further studies investigating the role of this altered gut microbiome in increased disease susceptibility are warranted for individuals who acquired HIV via mother-to-child transmission.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV/microbiologia , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Contagem de Linfócito CD4 , Camarões , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por HIV/congênito , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Humanos , Lactente , Masculino
8.
Microbiome ; 8(1): 50, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252810

RESUMO

Following publication of the original article [1], the authors reported an error in Fig. 2. The original Fig. 2 has been incorrectly replaced with the Supplementary Fig. 2. The correct Fig. 2 is presented here.

9.
PLoS Pathog ; 15(4): e1007611, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947289

RESUMO

Men who have sex with men (MSM) have differences in immune activation and gut microbiome composition compared with men who have sex with women (MSW), even in the absence of HIV infection. Gut microbiome differences associated with HIV itself when controlling for MSM, as assessed by 16S rRNA sequencing, are relatively subtle. Understanding whether gut microbiome composition impacts immune activation in HIV-negative and HIV-positive MSM has important implications since immune activation has been associated with HIV acquisition risk and disease progression. To investigate the effects of MSM and HIV-associated gut microbiota on immune activation, we transplanted feces from HIV-negative MSW, HIV-negative MSM, and HIV-positive untreated MSM to gnotobiotic mice. Following transplant, 16S rRNA gene sequencing determined that the microbiomes of MSM and MSW maintained distinct compositions in mice and that specific microbial differences between MSM and MSW were replicated. Immunologically, HIV-negative MSM donors had higher frequencies of blood CD38+ HLADR+ and CD103+ T cells and their fecal recipients had higher frequencies of gut CD69+ and CD103+ T cells, compared with HIV-negative MSW donors and recipients, respectively. Significant microbiome differences were not detected between HIV-negative and HIV-positive MSM in this small donor cohort, and immune differences between their recipients were trending but not statistically significant. A larger donor cohort may therefore be needed to detect immune-modulating microbes associated with HIV. To investigate whether our findings in mice could have implications for HIV replication, we infected primary human lamina propria cells stimulated with isolated fecal microbiota, and found that microbiota from MSM stimulated higher frequencies of HIV-infected cells than microbiota from MSW. Finally, we identified several microbes that correlated with immune readouts in both fecal recipients and donors, and with in vitro HIV infection, which suggests a role for gut microbiota in immune activation and potentially HIV acquisition in MSM.


Assuntos
Microbioma Gastrointestinal/imunologia , Vida Livre de Germes/imunologia , Infecções por HIV/imunologia , HIV/imunologia , Homossexualidade Masculina , Adolescente , Adulto , Idoso , Animais , Estudos de Coortes , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , HIV/genética , Infecções por HIV/microbiologia , Infecções por HIV/virologia , Humanos , Técnicas In Vitro , Masculino , Camundongos , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Comportamento Sexual , Adulto Jovem
10.
Microbiome ; 6(1): 198, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30396369

RESUMO

BACKGROUND: Gut microbiome characteristics associated with HIV infection are of intense research interest but a deep understanding has been challenged by confounding factors across studied populations. Notably, a Prevotella-rich microbiome described in HIV-infected populations is now understood to be common in men who have sex with men (MSM) regardless of HIV status, but driving factors and potential health implications are unknown. RESULTS: Here, we further define the MSM-associated gut microbiome and describe compositional differences between the fecal microbiomes of Prevotella-rich MSM and non-MSM that may underlie observed pro-inflammatory properties. Furthermore, we show relatively subtle gut microbiome changes in HIV infection in MSM and women that include an increase in potential pathogens that is ameliorated with antiretroviral therapy (ART). Lastly, using a longitudinal cohort, we describe microbiome changes that happen after ART initiation. CONCLUSIONS: This study provides an in-depth characterization of microbiome differences that occur in a US population infected with HIV and demonstrates the degree to which these differences may be driven by lifestyle factors, ART, and HIV infection itself. Understanding microbiome compositions that occur with sexual behaviors that are high risk for acquiring HIV and untreated and ART-treated HIV infection will guide the investigation of immune and metabolic functional implications to ultimately target the microbiome therapeutically.


Assuntos
Antirretrovirais/uso terapêutico , Microbioma Gastrointestinal/fisiologia , Infecções por HIV/microbiologia , Prevotella/isolamento & purificação , Minorias Sexuais e de Gênero , Feminino , Humanos , Estilo de Vida , Estudos Longitudinais , Masculino , Fatores de Risco , Comportamento Sexual , Inquéritos e Questionários
11.
Cancer Cell ; 34(4): 659-673.e6, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30270124

RESUMO

From an organismal perspective, cancer cell populations can be considered analogous to parasites that compete with the host for essential systemic resources such as glucose. Here, we employed leukemia models and human leukemia samples to document a form of adaptive homeostasis, where malignant cells alter systemic physiology through impairment of both host insulin sensitivity and insulin secretion to provide tumors with increased glucose. Mechanistically, tumor cells induce high-level production of IGFBP1 from adipose tissue to mediate insulin sensitivity. Further, leukemia-induced gut dysbiosis, serotonin loss, and incretin inactivation combine to suppress insulin secretion. Importantly, attenuated disease progression and prolonged survival are achieved through disruption of the leukemia-induced adaptive homeostasis. Our studies provide a paradigm for systemic management of leukemic disease.


Assuntos
Glucose/metabolismo , Homeostase/fisiologia , Resistência à Insulina/fisiologia , Leucemia/metabolismo , Animais , Dieta Hiperlipídica , Humanos , Insulina/biossíntese , Camundongos
12.
Curr Opin Microbiol ; 44: 34-40, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30036705

RESUMO

Dysbiosis, an imbalance in microbial communities, is linked with disease when this imbalance disturbs microbiota functions essential for maintaining health or introduces processes that promote disease. Dysbiosis in disease is predicted when microbiota differ compositionally from a healthy control population, but only truly defined when these differences are mechanistically related to adverse phenotypes. For the human gut microbiota, dysbiosis varies across diseases. One common manifestation is replacement of the complex community of anaerobes typical of the healthy adult gut microbiome with a community of lower overall microbial diversity and increased facultative anaerobes. Here we review diseases in which low-diversity dysbiosis has been observed and mechanistically linked with disease, with a particular focus on liver disease, inflammatory bowel disease, and Clostridium difficile infection.


Assuntos
Disbiose/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Humanos , Intestinos/microbiologia
13.
EBioMedicine ; 30: 192-202, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29650491

RESUMO

The inflammatory properties of the enteric microbiota of Human Immunodeficiency Virus (HIV)-infected individuals are of considerable interest because of strong evidence that bacterial translocation contributes to chronic immune activation and disease progression. Altered enteric microbiota composition occurs with HIV infection but whether altered microbiota composition or increased intestinal permeability alone drives peripheral immune activation is controversial. To comprehensively assess the inflammatory properties of HIV-associated enteric microbiota and relate these to systemic immune activation, we developed methods to purify whole fecal bacterial communities (FBCs) from stool for use in in vitro immune stimulation assays with human cells. We show that the enteric microbiota of untreated HIV-infected subjects induce significantly higher levels of activated monocytes and T cells compared to seronegative subjects. FBCs from anti-retroviral therapy (ART)-treated HIV-infected individuals induced intermediate T cell activation, indicating an only partial correction of adaptive immune cell activation capacity of the microbiome with ART. In vitro activation levels correlated with activation levels and viral load in blood and were particularly high in individuals harboring specific gram-positive opportunistic pathogens. Blockade experiments implicated Tumor Necrosis Factor (TNF)-α and Toll-Like Receptor-2 (TLR2), which recognizes peptidoglycan, as strong mediators of T cell activation; This may contradict a previous focus on lipopolysaccharide as a primary mediator of chronic immune activation. These data support that increased inflammatory properties of the enteric microbiota and not increased permeability alone drives chronic inflammation in HIV.


Assuntos
Fezes/microbiologia , Infecções por HIV/imunologia , Infecções por HIV/microbiologia , Microbiota , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Citocinas/metabolismo , Feminino , HIV-1/fisiologia , Homossexualidade Masculina , Humanos , Mediadores da Inflamação/metabolismo , Ativação Linfocitária/imunologia , Masculino , Análise de Componente Principal , RNA Ribossômico 16S/genética , Linfócitos T/imunologia , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Carga Viral
14.
Pediatr Res ; 84(2): 219-227, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29538359

RESUMO

BACKGROUND: Recent evidence supports that the gut microbiota may be involved in the pathophysiology of non-alcoholic fatty liver disease (NAFLD), and may also offer avenues for treatment or prevention. METHODS: We investigated the associations among gut microbiota, diet, and hepatic fat fraction (HFF) in 107 adolescents. Magnetic resonance imaging (MRI) was used to assess HFF, and 16S rRNA gene sequencing was performed on collected fecal samples. Dietary intake was assessed using Food Frequency Questionnaires. We examined the association between gut microbiota alpha diversity and HFF, and assessed the predictive accuracy for HFF of (1) taxonomic composition, (2) dietary intake, (3) demographic and comorbid conditions, and (4) the combination of these. RESULTS: Lower alpha diversity was associated with higher HFF (ß=-0.19, 95% confidence interval (CI) -0.36, -0.02). The selected taxa explained 17.7% (95% CI: 16.0-19.4%) of the variation in HFF. The combination of two of these taxa, Bilophila and Paraprevotella, with dietary intake of monounsaturated fatty acids and BMI z-scores explained 32.0% (95% CI: 30.3-33.6%) of the variation in HFF. CONCLUSION: The gut microbiota is associated with HFF in adolescents and may be useful to help identify youth who would be amenable to gut microbiota-based interventions.


Assuntos
Microbioma Gastrointestinal , Fígado/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/microbiologia , Adolescente , Índice de Massa Corporal , Criança , Comorbidade , Dieta , Fezes , Feminino , Humanos , Resistência à Insulina , Imageamento por Ressonância Magnética , Masculino , Obesidade , Estudos Prospectivos , RNA Ribossômico 16S/genética , Inquéritos e Questionários , Adulto Jovem
15.
Cell Host Microbe ; 20(4): 535-547, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693306

RESUMO

Zwitterionic capsular polysaccharides (ZPSs) are bacterial products that modulate T cells, including inducing anti-inflammatory IL-10-secreting T regulatory cells (Tregs). However, only a few diverse bacteria are known to modulate the host immune system via ZPS. We present a genomic screen for bacteria encoding ZPS molecules. We identify diverse host-associated bacteria, including commensals and pathogens with known anti-inflammatory properties, with the capacity to produce ZPSs. Human mononuclear cells stimulated with lysates from putative ZPS-producing bacteria induce significantly greater IL-10 production and higher proportions of Tregs than lysates from non-ZPS-encoding relatives or a commensal strain of Bacteroides cellulosilyticus in which a putative ZPS biosynthetic operon was genetically disrupted. Similarly, wild-type B. cellulosilyticus DSM 14838, but not a close relative lacking a putative ZPS, attenuated experimental colitis in mice. Collectively, this screen identifies bacterial strains that may use ZPSs to interact with the host as well as those with potential probiotic properties.


Assuntos
Anti-Inflamatórios/metabolismo , Bactérias/química , Tolerância Imunológica , Interleucina-10/metabolismo , Polissacarídeos Bacterianos/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Colite/patologia , Modelos Animais de Doenças , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...