Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 26(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519191

RESUMO

SIGNIFICANCE: The highest absorption peaks of the main components of bone are in the mid-infrared region, making Er:YAG and CO2 lasers the most efficient lasers for cutting bone. Yet, studies of deep bone ablation in minimally invasive settings are very limited, as finding suitable materials for coupling high-power laser light with low attenuation beyond 2 µm is not trivial. AIM: The first aim of this study was to compare the performance of different optical fibers in terms of transmitting Er:YAG laser light with a 2.94-µm wavelength at high pulse energy close to 1 J. The second aim was to achieve deep bone ablation using the best-performing fiber, as determined by our experiments. APPROACH: In our study, various optical fibers with low attenuation (λ = 2.94 µm) were used to couple the Er:YAG laser. The fibers were made of germanium oxide, sapphire, zirconium fluoride, and hollow-core silica, respectively. We compared the fibers in terms of transmission efficiency, resistance to high Er:YAG laser energy, and bending flexibility. The best-performing fiber was used to achieve deep bone ablation in a minimally invasive setting. To do this, we adapted the optimal settings for free-space deep bone ablation with an Er:YAG laser found in a previous study. RESULTS: Three of the fibers endured energy per pulse as high as 820 mJ at a repetition rate of 10 Hz. The best-performing fiber, made of germanium oxide, provided higher transmission efficiency and greater bending flexibility than the other fibers. With an output energy of 370 mJ per pulse at 10 Hz repetition rate, we reached a cutting depth of 6.82 ± 0.99 mm in sheep bone. Histology image analysis was performed on the bone tissue adjacent to the laser ablation crater; the images did not show any structural damage. CONCLUSIONS: The findings suggest that our prototype could be used in future generations of endoscopic devices for minimally invasive laserosteotomy.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Óxido de Alumínio , Animais , Endoscópios , Fibras Ópticas , Ovinos
2.
Eur J Pharm Biopharm ; 85(1): 107-18, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23958322

RESUMO

The goal of the presented study was to compare the biocompatibility and cellular responses to porous silk fibroin (SF) scaffolds produced in a water-based (UPW) or a solvent based process (HFIP) using two different SF sources. For that reason, four different SF scaffolds were implanted (n=6) into drill hole defects in the cancellous bone of the sheep tibia and humerus. The scaffolds were evaluated histologically for biocompatibility, cell-material interaction, and cellular ingrowth. New bone formation was observed macroscopically and histologically at 8 weeks after implantation. For semiquantitative evaluation, the investigated parameters were scored and statistically analyzed (factorial ANOVA). All implants showed good biocompatibility as evident by low infiltration of inflammatory cells and the absent encapsulation of the scaffolds in connective tissue. Multinuclear foreign body giant cells (MFGCs) and macrophages were present in all parts of the scaffold at the material surface and actively degrading the SF material. Cell ingrowth and vascularization were uniform across the scaffold. However, in HFIP scaffolds, local regions of void pores were present throughout the scaffold, probably due to the low pore interconnectivity in this scaffold type in contrast to UPW scaffolds. The amount of newly formed bone was very low in both scaffold types but was more abundant in the periphery than in the center of the scaffolds and for HFIP scaffolds mainly restricted to single pores.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Fibroínas/uso terapêutico , Regeneração Tecidual Guiada , Úmero/cirurgia , Tíbia/cirurgia , Alicerces Teciduais , Animais , Animais Endogâmicos , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Adesão Celular , Proliferação de Células , Fibroínas/efeitos adversos , Fibroínas/química , Fibroínas/metabolismo , Reação a Corpo Estranho/prevenção & controle , Células Gigantes de Corpo Estranho/imunologia , Células Gigantes de Corpo Estranho/metabolismo , Regeneração Tecidual Guiada/efeitos adversos , Úmero/citologia , Úmero/lesões , Úmero/fisiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Teste de Materiais , Neovascularização Fisiológica , Osteócitos/citologia , Porosidade , Carneiro Doméstico , Tíbia/citologia , Tíbia/lesões , Tíbia/fisiologia , Alicerces Teciduais/efeitos adversos , Alicerces Teciduais/química
3.
Open Orthop J ; 5: 63-71, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21566736

RESUMO

BACKGROUND: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. MATERIALS AND METHODS: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. RESULTS: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. CONCLUSIONS: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects.

4.
Open Orthop J ; 2: 66-78, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-19506701

RESUMO

Skeletal defects may result from traumatic, infectious, congenital or neoplastic processes and are considered to be a challenge for reconstructive surgery. Although the autologous bone graft is still the "gold standard", there is continuing demand for bone substitutes because of associated disadvantages, such as limited supply and potential donor side morbidity [1]. This is not only true for indications in orthopedic and craniomaxillofacial surgeries, but also in repairing endodontic defects and in dental implantology.Before clinical use all new bone substitute materials have to be validated for their osseoconductive and - depending on the composition of the material also -inductive ability, as well as for their long-term biocompatibility in bone. Serving this purpose various bone healing models to test osteocompatibility and inflammatory potential of a novel material on one hand and, on the other hand, non-healing osseous defects to assess the healing potential of a bone substitute material have been developed. Sometimes the use of more than one implantation site can be helpful to provide a wide range of information about a new material [2].Important markers for biocompatibility and inflammatory responses are the cell types appearing after the implantation of foreign material. There, especially the role of foreign body giant cells (FBGC) is discussed controversial in the pertinent literature, such that it is not clear whether their presence marks an incompatibility of the biomaterial, or whether it belongs to a normal degradation behavior of modern, resorbable biomaterials.This publication is highlighting the different views currently existing about the function of FBGC that appear in response to biomaterials at the implantation sites. A short overview of the general classes of biomaterials, where FBGC may appear as cellular response, is added for clarity, but may not be complete.

5.
BMC Musculoskelet Disord ; 7: 67, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16911787

RESUMO

BACKGROUND: The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. METHODS: A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. RESULTS: This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. CONCLUSION: This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.


Assuntos
Materiais Biocompatíveis/farmacologia , Substitutos Ósseos/farmacologia , Osso e Ossos/fisiologia , Teste de Materiais , Modelos Animais , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Diáfises/fisiologia , Epífises/fisiologia , Feminino , Fêmur/fisiologia , Úmero/fisiologia , Osseointegração , Radiografia , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...