Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 28(12): 2669-2678, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35377946

RESUMO

PURPOSE: In patients with locally advanced esophageal adenocarcinoma, response to neoadjuvant therapy strongly predicts survival, but robust molecular predictors of response have been lacking. We therefore sought to discover meaningful predictors of response in these patients. EXPERIMENTAL DESIGN: We retrospectively identified all patients with adenocarcinoma of the lower esophagus or gastroesophageal junction who (i) were treated with multimodality therapy with curative intent at our institution from 2014 through 2020 and (ii) underwent prospective sequencing by Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets. Clinicopathologic and genomic data were analyzed to identify potential genomic features, somatic alterations, and oncogenic pathways associated with treatment response. RESULTS: In total, 237 patients were included. MDM2 amplification was independently associated with poor response to neoadjuvant therapy [OR, 0.10 (95% confidence interval, 0.01-0.55); P = 0.032], when accounting for significant clinicopathologic variables, including clinical stage, tumor grade, and chemotherapy regimen. Moreover, TP53 pathway alterations, grouped according to inferred severity of TP53 dysfunction, were significantly associated with response to neoadjuvant therapy (P = 0.004, q = 0.07). Patients with MDM2 amplifications or truncating biallelic TP53 mutations had similar outcomes in terms of poor responses to neoadjuvant therapy and, consequently, shorter progression-free survival, compared with patients with TP53 pathway wild-type tumors. Thus, worsening TP53 dysfunction was directly correlated with worse outcomes. CONCLUSIONS: MDM2 amplification and TP53 status are associated with response to therapy in patients with esophageal adenocarcinoma. Given the dearth of actionable targets in esophageal adenocarcinoma, MDM2 inhibition, in combination with cytotoxic chemotherapy, may represent an important therapeutic strategy to overcome treatment resistance and improve outcomes in these patients.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Humanos , Terapia Neoadjuvante , Estudos Prospectivos , Estudos Retrospectivos , Proteína Supressora de Tumor p53/genética
2.
Clin Cancer Res ; 27(12): 3491-3498, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33795256

RESUMO

PURPOSE: To delineate recurrent oncogenic driver alterations and dysregulated pathways in esophageal adenocarcinoma and to assess their prognostic value. EXPERIMENTAL DESIGN: We analyzed a large cohort of patients with lower esophageal and junctional adenocarcinoma, prospectively sequenced by MSK-IMPACT with high-quality clinical annotation. Patients were subdivided according to treatment intent, curative versus palliative, which closely mirrored clinical staging. Genomic features, alterations, and pathways were examined for association with overall survival using Cox proportional hazard models, adjusted for relevant clinicopathologic factors knowable at the time of diagnosis. RESULTS: Analysis of 487 patients revealed 16 oncogenic driver alterations, mostly amplifications, present in ≥5% of patients. Patients in the palliative-intent cohort, compared with those in the curative-intent cohort, were more likely to have metastatic disease, ERBB2 amplifications, Cell-cycle and RTK-RAS pathway alterations, as well as a higher fraction of genome altered and rate of whole-genome doubling. In multivariable analyses, CDKN2A alterations, SMAD4 alterations, KRAS amplifications, Cell-cycle and TGFß pathways, and overall number of oncogenic drivers were independently associated with worse overall survival. ERBB2 amplification was associated with improved survival, presumably due to trastuzumab therapy. CONCLUSIONS: Our study suggests that higher levels of genomic instability are associated with more advanced disease in esophageal adenocarcinoma. Furthermore, CDKN2A, KRAS, and SMAD4 represent prognostic biomarkers, given their strong association with poor survival.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Prognóstico
3.
J Orthop Res ; 38(4): 811-822, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31696955

RESUMO

Chronic rotator cuff tears are a common source of shoulder pain and disability. Patients with rotator cuff tears often have substantial weakness, fibrosis, and fat accumulation, which limit successful surgical repair and postoperative rehabilitation. The Murphy Roths Large (MRL) strain of mice have demonstrated superior healing and protection against pathological changes in several disease and injury conditions. We tested the hypothesis that, compared with the commonly used C57Bl/6 (B6) strain, MRL mice would have less muscle fiber atrophy and fat accumulation, and be protected against the loss in force production that occurs after cuff tear. Adult male B6 and MRL mice were subjected to a rotator cuff tear, and changes in muscle fiber contractility and histology were measured. RNA sequencing and shotgun metabolomics and lipidomics were also performed. The muscles were harvested one month after tear. B6 and MRL mice had a 40% reduction in relative muscle force production after rotator cuff tear. RNA sequencing identified an increase in fibrosis-associated genes and a reduction in mitochondrial metabolism genes. The markers of glycolytic metabolism increased in B6 mice, while MRL mice appeared to increase amino acid metabolism after tear. There was an accumulation of lipid after injury, although there was a divergent response between B6 and MRL mice in the types of lipid species that accrued. There were strain-specific differences between the transcriptome, metabolome, and lipidome of B6 and MRL mice, but these differences did not protect MRL mice from weakness and pathological changes after rotator cuff tear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:811-822, 2020.


Assuntos
Camundongos Endogâmicos , Atrofia Muscular/etiologia , Lesões do Manguito Rotador/complicações , Manguito Rotador/metabolismo , Transcriptoma , Animais , Masculino , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Manguito Rotador/patologia , Lesões do Manguito Rotador/metabolismo , Lesões do Manguito Rotador/patologia
4.
Cell Rep ; 29(1): 225-235.e5, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577952

RESUMO

PINK1 and Parkin are established mediators of mitophagy, the selective removal of damaged mitochondria by autophagy. PINK1 and Parkin have been proposed to act as tumor suppressors, as loss-of-function mutations are correlated with enhanced tumorigenesis. However, it is unclear how PINK1 and Parkin act in coordination during mitophagy to influence the cell cycle. Here we show that PINK1 and Parkin genetically interact with proteins involved in cell cycle regulation, and loss of PINK1 and Parkin accelerates cell growth. PINK1- and Parkin-mediated activation of TBK1 at the mitochondria during mitophagy leads to a block in mitosis due to the sequestration of TBK1 from its physiological role at centrosomes during mitosis. Our study supports a diverse role for the far-reaching, regulatory effects of mitochondrial quality control in cellular homeostasis and demonstrates that the PINK1/Parkin pathway genetically interacts with the cell cycle, providing a framework for understanding the molecular basis linking PINK1 and Parkin to mitosis.


Assuntos
Ciclo Celular/genética , Mitocôndrias/genética , Mitose/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células HCT116 , Células HEK293 , Células HeLa , Homeostase/genética , Humanos , Mitofagia/genética
5.
Circ Res ; 116(3): 480-8, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25634971

RESUMO

There is increasing interest in the role of autophagic flux in maintaining normal vessel wall biology and a growing suspicion that autophagic dysregulation may be a common pathway through which vascular aging and associated pathologies develop. Within endothelial and smooth muscle cells, diverse but important triggers that range from oxidized lipids to ß-amyloid seem to stimulate autophagosome formation potently. In addition, emerging evidence links autophagy to a wide array of vascular processes ranging from angiogenesis to calcification of the vessel wall. Alterations in autophagic flux are also increasingly being implicated in disease processes that include both atherosclerosis and pulmonary hypertension. Finally, recent insights point toward an important role of autophagy in the paracrine regulation of vasoactive substances from the endothelium. Here, we review the progress in understanding how autophagy can contribute to vascular biology and the emerging strategies to target this process for therapeutic benefit.


Assuntos
Autofagia , Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Envelhecimento , Peptídeos beta-Amiloides/metabolismo , Animais , Endotélio Vascular/crescimento & desenvolvimento , Endotélio Vascular/fisiologia , Humanos , Peróxidos Lipídicos/metabolismo , Músculo Liso Vascular/crescimento & desenvolvimento , Músculo Liso Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA