Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Med Phys ; 45(4): 1444-1458, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29446082

RESUMO

PURPOSE: A prototype QC phantom system and analysis process were developed to characterize the spectral capabilities of a fast kV-switching dual-energy computed tomography (DECT) scanner. This work addresses the current lack of quantitative oversight for this technology, with the goal of identifying relevant scan parameters and test metrics instrumental to the development of a dual-energy quality control (DEQC). METHODS: A prototype elliptical phantom (effective diameter: 35 cm) was designed with multiple material inserts for DECT imaging. Inserts included tissue equivalent and material rods (including iodine and calcium at varying concentrations). The phantom was scanned on a fast kV-switching DECT system using 16 dual-energy acquisitions (CTDIvol range: 10.3-62 mGy) with varying pitch, rotation time, and tube current. The circular head phantom (22 cm diameter) was scanned using a similar protocol (12 acquisitions; CTDIvol range: 36.7-132.6 mGy). All acquisitions were reconstructed at 50, 70, 110, and 140 keV and using a water-iodine material basis pair. The images were evaluated for iodine quantification accuracy, stability of monoenergetic reconstruction CT number, noise, and positional constancy. Variance component analysis was used to identify technique parameters that drove deviations in test metrics. Variances were compared to thresholds derived from manufacturer tolerances to determine technique parameters that had a nominally significant effect on test metrics. RESULTS: Iodine quantification error was largely unaffected by any of the technique parameters investigated. Monoenergetic HU stability was found to be affected by mAs, with a threshold under which spectral separation was unsuccessful, diminishing the utility of DECT imaging. Noise was found to be affected by CTDIvol in the DEQC body phantom, and CTDIvol and mA in the DEQC head phantom. Positional constancy was found to be affected by mAs in the DEQC body phantom and mA in the DEQC head phantom. CONCLUSION: A streamlined scan protocol was developed to further investigate the effects of CTDIvol and rotation time while limiting data collection to the DEQC body phantom. Further data collection will be pursued to determine baseline values and statistically based failure thresholds for the validation of long-term DECT scanner performance.


Assuntos
Tomografia Computadorizada por Raios X/instrumentação , Imagens de Fantasmas , Controle de Qualidade , Razão Sinal-Ruído , Fatores de Tempo
2.
Invest Radiol ; 52(1): 30-41, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27379697

RESUMO

OBJECTIVE: The aim of this study was to develop a diagnostic framework for distinguishing calcific from hemorrhagic cerebral lesions using dual-energy computed tomography (DECT) in an anthropomorphic phantom system. MATERIALS AND METHODS: An anthropomorphic phantom was designed to mimic the CT imaging characteristics of the human head. Cylindrical lesion models containing either calcium or iron, mimicking calcification or hemorrhage, respectively, were developed to exhibit matching, and therefore indistinguishable, single-energy CT (SECT) attenuation values from 40 to 100 HU. These lesion models were fabricated at 0.5, 1, and 1.5 cm in diameter and positioned in simulated cerebrum and skull base locations within the anthropomorphic phantom. All lesion sizes were modeled in the cerebrum, while only 1.5-cm lesions were modeled in the skull base. Images were acquired using a GE 750HD CT scanner and an expansive dual-energy protocol that covered variations in dose (36.7-132.6 mGy CTDIvol, n = 12), image thickness (0.625-5 mm, n = 4), and reconstruction filter (soft, standard, detail, n = 3) for a total of 144 unique technique combinations. Images representing each technique combination were reconstructed into water and calcium material density images, as well as a monoenergetic image chosen to mimic the attenuation of a 120-kVp SECT scan. A true single-energy routine brain protocol was also included for verification of lesion SECT attenuation. Points representing the 3 dual-energy reconstructions were plotted into a 3-dimensional space (water [milligram/milliliter], calcium [milligram/milliliter], monoenergetic Hounsfield unit as x, y, and z axes, respectively), and the distribution of points analyzed using 2 approaches: support vector machines and a simple geometric bisector (GB). Each analysis yielded a plane of optimal differentiation between the calcification and hemorrhage lesion model distributions. By comparing the predicted lesion composition to the known lesion composition, we identified the optimal combination of CTDIvol, image thickness, and reconstruction filter to maximize differentiation between the lesion model types. To validate these results, a new set of hemorrhage and calcification lesion models were created, scanned in a blinded fashion, and prospectively classified using the planes of differentiation derived from support vector machine and GB methods. RESULTS: Accuracy of differentiation improved with increasing dose (CTDIvol) and image thickness. Reconstruction filter had no effect on the accuracy of differentiation. Using an optimized protocol consisting of the maximum CTDIvol of 132.6 mGy, 5-mm-thick images, and a standard filter, hemorrhagic and calcific lesion models with equal SECT attenuation (Hounsfield unit) were differentiated with over 90% accuracy down to 70 HU for skull base lesions of 1.5 cm, and down to 100 HU, 60 HU, and 60 HU for cerebrum lesions of 0.5, 1.0, and 1.5 cm, respectively. The analytic method that yielded the best results was a simple GB plane through the 3-dimensional DECT space. In the validation study, 96% of unknown lesions were correctly classified across all lesion sizes and locations investigated. CONCLUSIONS: We define the optimal scan parameters and expected limitations for the accurate classification of hemorrhagic versus calcific cerebral lesions in an anthropomorphic phantom with DECT. Although our proposed DECT protocol represents an increase in dose compared with routine brain CT, this method is intended as a specialized evaluation of potential brain hemorrhage and is thus counterbalanced by increased diagnostic benefit. This work provides justification for the application of this technique in human clinical trials.


Assuntos
Calcinose/diagnóstico por imagem , Hemorragias Intracranianas/diagnóstico por imagem , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Calcinose/metabolismo , Calcinose/patologia , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Hemorragias Intracranianas/metabolismo , Hemorragias Intracranianas/patologia , Imagens de Fantasmas , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Máquina de Vetores de Suporte , Tomografia Computadorizada por Raios X/métodos
3.
J Appl Clin Med Phys ; 17(6): 343-355, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929507

RESUMO

Some digital radiography (DR) detectors and software allow for remote download of exam statistics, including image reject status, body part, projection, and exposure index (EI). The ability to have automated data collection from multiple DR units is conducive to a quality control (QC) program monitoring institutional radiographic exposures. We have implemented such a QC program with the goal to identify outliers in machine radiation output and opportunities for improvement in radiation dose levels. We studied the QC records of four digital detectors in greater detail on a monthly basis for one year. Although individual patient entrance skin exposure varied, the radiation dose levels to the detectors were made to be consistent via phototimer recalibration. The exposure data stored on each digital detector were periodically downloaded in a spreadsheet format for analysis. EI median and stan-dard deviation were calculated for each protocol (by body part) and EI histograms were created for torso protocols. When histograms of EI values for different units were compared, we observed differences up to 400 in average EI (representing 60% difference in radiation levels to the detector) between units nominally cali-brated to the same EI. We identified distinct components of the EI distributions, which in some cases, had mean EI values 300 apart. Peaks were observed at the current calibrated EI, a previously calibrated EI, and an EI representing computed radiography (CR) techniques. Our findings in this ongoing project have allowed us to make useful interventions, from emphasizing the use of phototimers instead of institutional memory of manual techniques to improvements in our phototimer calibration. We believe that this QC program can be implemented at other sites and can reveal problems with radiation levels in the aggregate that are difficult to identify on a case-by-case basis.


Assuntos
Garantia da Qualidade dos Cuidados de Saúde , Exposição à Radiação/análise , Proteção Radiológica/normas , Intensificação de Imagem Radiográfica/instrumentação , Radiografia/métodos , Radiografia/normas , Humanos , Doses de Radiação , Radiografia Abdominal/normas , Radiografia Torácica/normas , Raios X
4.
Phys Med Biol ; 60(3): 1047-67, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25585685

RESUMO

Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios.


Assuntos
Amálgama Dentário , Fixação Interna de Fraturas , Prótese de Quadril , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Artefatos , Feminino , Humanos , Masculino , Metais , Intensificação de Imagem Radiográfica/métodos , Software , Vértebras Torácicas/lesões , Vértebras Torácicas/cirurgia
5.
Invest Radiol ; 50(1): 9-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25162534

RESUMO

OBJECTIVES: Calcific and hemorrhagic intracranial lesions with attenuation levels of less than 100 Hounsfield units (HUs) cannot currently be reliably differentiated by single-energy computed tomography (SECT). The proper differentiation of these lesion types would have a multitude of clinical applications. A phantom model was used to test the ability of dual-energy CT (DECT) to differentiate such lesions. MATERIALS AND METHODS: Agar gel-bound ferric oxide and hydroxyapatite were used to model hemorrhage and calcification, respectively. Gel models were scanned using SECT and DECT and organized into SECT attenuation-matched pairs at 16 attenuation levels between 0 and 100 HU. Dual-energy CT data were analyzed using 3-dimensional (3D) Gaussian mixture models (GMMs), as well as a simplified threshold plane metric derived from the 3D GMM, to assign voxels to hemorrhagic or calcific categories. Accuracy was calculated by comparing predicted voxel assignments with actual voxel identities. RESULTS: We measured 6032 voxels from each gel model, for a total of 193,024 data points (16 matched model pairs). Both the 3D GMM and its more clinically implementable threshold plane derivative yielded similar results, with higher than 90% accuracy at matched SECT attenuation levels of 50 HU and greater. CONCLUSIONS: Hemorrhagic and calcific lesions with attenuation levels between 50 and 100 HU were differentiable using DECT in a clinically relevant phantom system with higher than 90% accuracy. This method warrants further testing for potential clinical applications.


Assuntos
Calcinose/diagnóstico por imagem , Hemorragias Intracranianas/diagnóstico por imagem , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Diagnóstico Diferencial , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes
6.
Med Phys ; 40(5): 051908, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23635278

RESUMO

PURPOSE: The results of a long-term, comprehensive CT quality control (QC) program were analyzed to investigate differences in failure rates based on QC test, scanner utilization pattern, and number of channels, as well as explore issues regarding testing frequency. METHODS: CT QC data were collected over a 4-yr period for 26 CT scanners representing two different vendors and using three different QC programs culminating in over 100 scanner-years of QC data. QC tests analyzed included water tests [mean CT number, standard deviation, and uniformity], linearity tests [air, water, and acrylic], and artifact analysis [water phantom and large phantom]. The data were organized based on scanner use, number of channels, scanner modality, and QC test. Logistic regression model analysis with generalized estimating equation method was used to estimate failure rates for each group. RESULTS: A significant difference between failure rates with respect to QC test was found (p-value = 0.02). Large phantom artifacts, standard deviation of water, and water phantom artifacts had the three highest failure rates. No significant difference was found between failure rates organized by scanner use, scanner modality, or number of channels. CONCLUSIONS: Standard deviation of water is the most important quantitative value to collect as part of a daily QC program. Uniformity and linearity tests have relatively low failure rates and, therefore, may not require daily verification. While its failure rates were moderate, daily artifact analysis is suggested due to its potentially high impact on clinical image quality. Weekly or monthly large phantom artifact analysis is encouraged for those sites possessing an appropriate phantom.


Assuntos
Tomografia Computadorizada por Raios X/normas , Modelos Logísticos , Imagens de Fantasmas , Controle de Qualidade , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...