Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38730083

RESUMO

PURPOSE: Brain functional and physiological plasticity is essential to combat dynamic environmental challenges. The rhythmic dopamine signaling pathway, which regulates emotion, reward and learning, shows seasonal patterns with higher capacity of dopamine synthesis and lower number of dopamine transporters during dark seasons. However, seasonal variation of the dopamine receptor signaling remains to be characterized. METHODS: Based on a historical database of healthy human brain [11C]raclopride PET scans (n = 291, 224 males and 67 females), we investigated the seasonal patterns of D2/3 dopamine receptor signaling. Daylength at the time of scanning was used as a predictor for brain regional non-displaceable binding of the radiotracer, while controlling for age and sex. RESULTS: Daylength was negatively correlated with availability of D2/3 dopamine receptors in the striatum. The largest effect was found in the left caudate, and based on the primary sample, every 4.26 h (i.e., one standard deviation) increase of daylength was associated with a mean 2.8% drop (95% CI -0.042 to -0.014) of the receptor availability. CONCLUSIONS: Seasonally varying D2/3 receptor signaling may also underlie the seasonality of mood, feeding, and motivational processes. Our finding suggests that in future studies of brain dopamine signaling, especially in high-latitude regions, the effect of seasonality should be considered.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38477483

RESUMO

CONTEXT: Proneurotensin (pNT) is associated with obesity and T2D, but the effects of Roux-en-Y gastric bypass (RYGB) on postprandial pNT levels are not well studied. OBJECTIVE: Assess effects of RYGB versus very low-energy diet (VLED) on pNT levels in response to mixed-meal tests (MMT), and long-term effects of RYGB on fasting pNT.Study participants: Cohort 1: Nine normoglycemic (NG) and ten T2D patients underwent MMT before and after VLED, immediately post-RYGB and six weeks post-RYGB. Cohort 2: Ten controls with normal weight and ten patients with obesity and T2D, who underwent RYGB or vertical sleeve gastrectomy (VSG), were subjected to MMTs and GIP infusions pre-surgery and three months post-surgery. GLP-1 infusions were performed in normal weight participants. Cohort 3: Fasting pNT was assessed pre-RYGB (n=161), two months post-RYGB (n=92) and 1-year post-RYGB (n=118) in NG and T2D patients. pNT levels were measured using ELISA. RESULTS: Reduced fasting and postprandial pNT were evident after VLED and immediately following RYGB. Reintroduction of solid food post-RYGB increased fasting and postprandial pNT. Prior to RYGB, all patients lacked a meal response in pNT, but this was evident post-RYGB/VSG. GIP- or GLP-1 infusion had no effect on pNT levels. Fasting pNT were higher 1-year post-RYGB regardless of glycemic status. CONCLUSION: RYGB causes a transient reduction in pNT as a consequence of caloric restriction. The RYGB/VSG-induced rise in postprandial pNT is independent of GIP and GLP-1 and higher fasting pNT are maintained one year post-surgically.

3.
Neuroimage Clin ; 41: 103578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38395027

RESUMO

PURPOSE: Aberrant dopaminergic function is linked with motor, psychotic, and affective symptoms, but studies have typically compared a single patient group with healthy controls. METHODS: Here, we investigated the variation in striatal (caudate nucleus, nucleus accumbens, and putamen) and thalamic type 2 dopamine receptor (D2R) availability using [11C]raclopride positron emission tomography (PET) data from a large sample of 437 humans including healthy controls, and subjects with Parkinson's disease (PD), antipsychotic-naïve schizophrenia, severe violent behavior, pathological gambling, depression, and overweight. We analyzed regional group differences in D2R availability. We also analyzed the interregional correlation in D2R availability within each group. RESULTS: Subjects with PD showed the clearest decline in D2R availability. Overall, the groups showed high interregional correlation in D2R availability, while this pattern was weaker in violent offenders. Subjects with schizophrenia, pathological gambling, depression, or overweight did not show clear changes in either the regional receptor availability or the interregional correlation. CONCLUSION: We conclude that the dopaminergic changes in neuropsychiatric conditions might not only affect the overall receptor availability but also how coupled regions are across people. The region-specific receptor availability more profoundly links to the motor symptoms, while the between-region coupling might be disrupted in violence.


Assuntos
Sobrepeso , Doença de Parkinson , Humanos , Receptores de Dopamina D2/metabolismo , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons , Corpo Estriado , Dopamina
4.
Metabolites ; 14(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38393006

RESUMO

Accurate positron emission tomography (PET) data quantification relies on high-quality input plasma curves, but venous blood sampling may yield poor-quality data, jeopardizing modeling outcomes. In this study, we aimed to recover sub-optimal input functions by using information from the tail (5th-100th min) of curves obtained through the frequent sampling protocol and an input recovery (IR) model trained with reference curves of optimal shape. Initially, we included 170 plasma input curves from eight published studies with clamp [18F]-fluorodeoxyglucose PET exams. Model validation involved 78 brain PET studies for which compartmental model (CM) analysis was feasible (reference (ref) + training sets). Recovered curves were compared with original curves using area under curve (AUC), max peak standardized uptake value (maxSUV). CM parameters (ref + training sets) and fractional uptake rate (FUR) (all sets) were computed. Original and recovered curves from the ref set had comparable AUC (d = 0.02, not significant (NS)), maxSUV (d = 0.05, NS) and comparable brain CM results (NS). Recovered curves from the training set were different from the original according to maxSUV (d = 3) and biologically plausible according to the max theoretical K1 (53//56). Brain CM results were different in the training set (p < 0.05 for all CM parameters and brain regions) but not in the ref set. FUR showed reductions similarly in the recovered curves of the training and test sets compared to the original curves (p < 0.05 for all regions for both sets). The IR method successfully recovered the plasma inputs of poor quality, rescuing cases otherwise excluded from the kinetic modeling results. The validation approach proved useful and can be applied to different tracers and metabolic conditions.

6.
J Clin Endocrinol Metab ; 109(4): 1033-1040, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37955868

RESUMO

CONTEXT: Studies on human renal metabolism are scanty. Nowadays, functional imaging allows the characterization of renal metabolism in a noninvasive manner. We have recently demonstrated that fluorodeoxyglucose F18 (18F FDG) positron emission tomography can be used to analyze renal glucose uptake (GU) rates, and that the renal cortex is an insulin-sensitive tissue. OBJECTIVE: To confirm that renal GU is decreased in people with obesity and to test whether circulating metabolites are related to renal GU. DESIGN, SETTING AND PARTICIPANTS: Eighteen people with obesity and 18 nonobese controls were studied with [18F]FDG positron emission tomography during insulin clamp. Renal scans were obtained ∼60 minutes after [18F]FDG injection. Renal GU was measured using fractional uptake rate and after correcting for residual intratubular [18F]FDG. Circulating metabolites were measured using high-throughput proton nuclear magnetic resonance metabolomics. RESULTS: Cortical GU was higher in healthy nonobese controls compared with people with obesity (4.7 [3.4-5.6] vs 3.1 [2.2-4.3], P = .004, respectively), and it associated positively with the degree of insulin sensitivity (M value) (r = 0.42, P = .01). Moreover, cortical GU was inversely associated with circulating ß-OH-butyrate (r = -0.58, P = .009), acetoacetate (r = -0.48, P = .008), citrate (r = -0.44, P = .01), and free fatty acids (r = -0.68, P < .0001), even when accounting for the M value. On the contrary, medullary GU was not associated with any clinical parameters. CONCLUSION: These data confirm differences in renal cortical GU between people with obesity and healthy nonobese controls. Moreover, the negative correlations between renal cortex GU and free fatty acids, ketone bodies, and citrate are suggestive of substrate competition in the renal cortex.


Assuntos
Resistência à Insulina , Humanos , Ácidos Graxos não Esterificados , Fluordesoxiglucose F18 , Glucose/metabolismo , Insulina , Tomografia por Emissão de Pósitrons , Obesidade , Citratos , Compostos Radiofarmacêuticos
7.
J Cereb Blood Flow Metab ; 44(3): 407-418, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37824728

RESUMO

The human brain undergoes metabolic adaptations in obesity, but the underlying mechanisms have remained largely unknown. We compared concentrations of often reported brain metabolites measured with magnetic resonance spectroscopy (1H-MRS, 3 T MRI) in the occipital lobe in subjects with obesity and lean controls under different metabolic conditions (fasting, insulin clamp, following weight loss). Brain glucose uptake (BGU) quantified with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET)) was also performed in a subset of subjects during clamp. In dataset A, 48 participants were studied during fasting with brain 1H-MRS, while in dataset B 21 participants underwent paired brain 1H-MRS acquisitions under fasting and clamp conditions. In dataset C 16 subjects underwent brain 18F-FDG-PET and 1H-MRS during clamp. In the fasting state, total N-acetylaspartate was lower in subjects with obesity, while brain myo-inositol increased in response to hyperinsulinemia similarly in both lean participants and subjects with obesity. During clamp, BGU correlated positively with brain glutamine/glutamate, total choline, and total creatine levels. Following weight loss, brain creatine levels were increased, whereas increases in other metabolites remained not significant. To conclude, insulin signaling and glucose metabolism are significantly coupled with several of the changes in brain metabolites that occur in obesity.


Assuntos
Obesidade Mórbida , Humanos , Obesidade Mórbida/metabolismo , Insulina , Fluordesoxiglucose F18/metabolismo , Creatina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Obesidade/diagnóstico por imagem , Obesidade/metabolismo , Redução de Peso/fisiologia , Neuroimagem , Glucose/metabolismo , Colina/metabolismo
8.
J Nucl Med ; 64(Suppl 2): 11S-19S, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37918848

RESUMO

Recently, PET systems with a long axial field of view have become the current state of the art. Total-body PET scanners enable unique possibilities for scientific research and clinical diagnostics, but this new technology also raises numerous challenges. A key advantage of total-body imaging is that having all the organs in the field of view allows studying biologic interaction of all organs simultaneously. One of the new, promising imaging techniques is total-body quantitative perfusion imaging. Currently, 15O-labeled water provides a feasible option for quantitation of tissue perfusion at the total-body level. This review summarizes the status of the methodology and the analysis and provides examples of preliminary findings on applications of quantitative parametric perfusion images for research and clinical work. We also describe the opportunities and challenges arising from moving from single-organ studies to modeling of a multisystem approach with total-body PET, and we discuss future directions for total-body imaging.


Assuntos
Imagem de Perfusão , Água , Imagem de Perfusão/métodos , Tomografia por Emissão de Pósitrons/métodos
9.
Mol Metab ; 77: 101807, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717665

RESUMO

OBJECTIVES: Metformin is the first line therapy recommended for type 2 diabetes. However, the precise mechanism of action remains unclear and up to a quarter of patients show some degree of intolerance to the drug, with a similar number showing poor response to treatment, limiting its effectiveness. A better understanding of the mechanism of action of metformin may improve its clinical use. SLC2A2 (GLUT2) is a transmembrane facilitated glucose transporter, with important roles in the liver, gut and pancreas. Our group previously identified single nucleotide polymorphisms in the human SLC2A2 gene, which were associated with reduced transporter expression and an improved response to metformin treatment. The aims of this study were to model Slc2a2 deficiency and measure the impact on glucose homoeostasis and metformin response in mice. METHODS: We performed extensive metabolic phenotyping and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG)-positron emission tomography (PET) analysis of gut glucose uptake in high-fat diet-fed (HFD) mice with whole-body reduced Slc2a2 (Slc2a2+/-) and intestinal Slc2a2 KO, to assess the impact of metformin treatment. RESULTS: Slc2a2 partial deficiency had no major impact on body weight and insulin sensitivity, however mice with whole-body reduced Slc2a2 expression (Slc2a2+/-) developed an age-related decline in glucose homoeostasis (as measured by glucose tolerance test) compared to wild-type (Slc2a2+/+) littermates. Glucose uptake into the gut from the circulation was enhanced by metformin exposure in Slc2a2+/+ animals fed HFD and this action of the drug was significantly higher in Slc2a2+/- animals. However, there was no effect of specifically knocking-out Slc2a2 in the mouse intestinal epithelial cells. CONCLUSIONS: Overall, this work identifies a differential metformin response, dependent on expression of the SLC2A2 glucose transporter, and also adds to the growing evidence that metformin efficacy includes modifying glucose transport in the gut. We also describe a novel and important role for this transporter in maintaining efficient glucose homoeostasis during ageing.

10.
Cell Rep ; 42(9): 113131, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708023

RESUMO

Cold-induced brown adipose tissue (BAT) activation is considered to improve metabolic health. In murine BAT, cold increases the fundamental molecule for mitochondrial function, nicotinamide adenine dinucleotide (NAD+), but limited knowledge of NAD+ metabolism during cold in human BAT metabolism exists. We show that cold increases the serum metabolites of the NAD+ salvage pathway (nicotinamide and 1-methylnicotinamide) in humans. Additionally, individuals with cold-stimulated BAT activation have decreased levels of metabolites from the de novo NAD+ biosynthesis pathway (tryptophan, kynurenine). Serum nicotinamide correlates positively with cold-stimulated BAT activation, whereas tryptophan and kynurenine correlate negatively. Furthermore, the expression of genes involved in NAD+ biosynthesis in BAT is related to markers of metabolic health. Our data indicate that cold increases serum tryptophan conversion to nicotinamide to be further utilized by BAT. We conclude that NAD+ metabolism is activated upon cold in humans and is probably regulated in a coordinated fashion by several tissues.

11.
J Clin Med ; 12(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37568543

RESUMO

Thanks to technical advances in the field of medical imaging, it is now possible to study key features of renal anatomy and physiology, but so far poorly explored due to the inherent difficulties in studying both the metabolism and vasculature of the human kidney. In this narrative review, we provide an overview of recent research findings on renal perfusion, oxygenation, and substrate uptake. Most studies evaluating renal perfusion with positron emission tomography (PET) have been performed in healthy controls, and specific target populations like obese individuals or patients with renovascular disease and chronic kidney disease (CKD) have rarely been assessed. Functional magnetic resonance (fMRI) has also been used to study renal perfusion in CKD patients, and recent studies have addressed the kidney hemodynamic effects of therapeutic agents such as glucagon-like receptor agonists (GLP-1RA) and sodium-glucose co-transporter 2 inhibitors (SGLT2-i) in an attempt to characterise the mechanisms leading to their nephroprotective effects. The few available studies on renal substrate uptake are discussed. In the near future, these imaging modalities will hopefully become widely available with researchers more acquainted with them, gaining insights into the complex renal pathophysiology in acute and chronic diseases.

12.
Obesity (Silver Spring) ; 31(7): 1844-1858, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37368516

RESUMO

OBJECTIVE: Cannabinoid type 1 receptors (CB1R) modulate feeding behavior and energy homeostasis, and the CB1R tone is dysgulated in obesity. This study aimed to investigate CB1R availability in peripheral tissue and brain in young men with overweight versus lean men. METHODS: Healthy males with high (HR, n = 16) or low (LR, n = 20) obesity risk were studied with fluoride 18-labeled FMPEP-d2 positron emission tomography to quantify CB1R availability in abdominal adipose tissue, brown adipose tissue, muscle, and brain. Obesity risk was assessed by BMI, physical exercise habits, and familial obesity risk, including parental overweight, obesity, and type 2 diabetes. To assess insulin sensitivity, fluoro-[18 F]-deoxy-2-D-glucose positron emission tomography during hyperinsulinemic-euglycemic clamp was performed. Serum endocannabinoids were analyzed. RESULTS: CB1R availability in abdominal adipose tissue was lower in the HR than in the LR group, whereas no difference was found in other tissues. CB1R availability of abdominal adipose tissue and brain correlated positively with insulin sensitivity and negatively with unfavorable lipid profile, BMI, body adiposity, and inflammatory markers. Serum arachidonoyl glycerol concentration was associated with lower CB1R availability of the whole brain, unfavorable lipid profile, and higher serum inflammatory markers. CONCLUSIONS: The results suggest endocannabinoid dysregulation already in the preobesity state.


Assuntos
Canabinoides , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Masculino , Humanos , Sobrepeso , Resistência à Insulina/fisiologia , Receptores de Canabinoides , Obesidade , Gordura Abdominal/diagnóstico por imagem , Endocanabinoides , Tecido Adiposo
13.
J Clin Med ; 12(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37048767

RESUMO

We aimed to investigate the effects of maternal obesity on brain structure and metabolism in frail women, and their reversibility in response to exercise. We recruited 37 frail elderly women (20 offspring of lean/normal-weight mothers (OLM) and 17 offspring of obese/overweight mothers (OOM)) and nine non-frail controls to undergo magnetic resonance and diffusion tensor imaging (DTI), positron emission tomography with Fluorine-18-fluorodeoxyglucose (PET), and cognitive function tests (CERAD). Frail women were studied before and after a 4-month resistance training, and controls were studied once. White matter (WM) density (voxel-based morphometry) was higher in OLM than in OOM subjects. Exercise increased WM density in both OLM and OOM in the cerebellum in superior parietal regions in OLM and in cuneal and precuneal regions in OOM. OLM gained more WM density than OOM in response to intervention. No significant results were found from the Freesurfer analysis, nor from PET or DTI images. Exercise has an impact on brain morphology and cognition in elderly frail women.

14.
Metabolites ; 13(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36984827

RESUMO

Human brain metabolism is susceptible to temperature changes. It has been suggested that the supraclavicular brown adipose tissue (BAT) protects the brain from these fluctuations by regulating heat production through the presence of uncoupling protein 1 (UCP-1). It remains unsolved whether inter-individual variation in the expression of UCP-1, which represents the thermogenic capacity of the supraclavicular BAT, is linked with brain metabolism during cold stress. Ten healthy human participants underwent 18F-FDG PET scanning of the brain under cold stimulus to determine brain glucose uptake (BGU). On a separate day, an excision biopsy of the supraclavicular fat-the fat proximal to the carotid arteries supplying the brain with warm blood-was performed to determine the mRNA expression of the thermogenic protein UCP-1. Expression of UCP-1 in supraclavicular BAT was directly related to the whole brain glucose uptake rate determined under cold stimulation (rho = 0.71, p = 0.03). In sub-compartmental brain analysis, UCP-1 expression in supraclavicular BAT was directly related to cold-stimulated glucose uptake rates in the hypothalamus, medulla, midbrain, limbic system, frontal lobe, occipital lobe, and parietal lobe (all rho ≥ 0.67, p < 0.05). These relationships were independent of body mass index and age. When analysing gene expressions of BAT secretome, we found a positive correlation between cold-stimulated BGU and DIO2. These findings provide evidence of functional links between brain metabolism under cold stimulation and UCP-1 and DIO2 expressions in BAT in humans. More research is needed to evaluate the importance of these findings in clinical outcomes, for instance, in examining the supporting role of BAT in cognitive functions under cold stress.

15.
Eur J Nucl Med Mol Imaging ; 50(6): 1597-1606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764966

RESUMO

PURPOSE: Secretin activates brown adipose tissue (BAT) and induces satiation in both mice and humans. However, the exact brain mechanism of this satiety inducing, secretin-mediated gut-BAT-brain axis is largely unknown. METHODS AND RESULTS: In this placebo-controlled, single-blinded neuroimaging study, firstly using [18F]-fluorodeoxyglucose (FDG) PET measures (n = 15), we established that secretin modulated brain glucose consumption through the BAT-brain axis. Predominantly, we found that BAT and caudate glucose uptake levels were negatively correlated (r = -0.54, p = 0.037) during secretin but not placebo condition. Then, using functional magnetic resonance imaging (fMRI; n = 14), we found that secretin improved inhibitory control and downregulated the brain response to appetizing food images. Finally, in a PET-fMRI fusion analysis (n = 10), we disclosed the patterned correspondence between caudate glucose uptake and neuroactivity to reward and inhibition, showing that the secretin-induced neurometabolic coupling patterns promoted satiation. CONCLUSION: These findings suggest that secretin may modulate the BAT-brain metabolic crosstalk and subsequently the neurometabolic coupling to induce satiation. The study advances our understanding of the secretin signaling in motivated eating behavior and highlights the potential role of secretin in treating eating disorders and obesity. TRIAL REGISTRATION: EudraCT no. 2016-002373-35, registered 2 June 2016; Clinical Trials no. NCT03290846, registered 25 September 2017.


Assuntos
Tecido Adiposo Marrom , Apetite , Eixo Encéfalo-Intestino , Encéfalo , Comportamento Alimentar , Neuroimagem Funcional , Resposta de Saciedade , Secretina , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Apetite/efeitos dos fármacos , Apetite/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiologia , Secretina/metabolismo , Secretina/farmacologia , Resposta de Saciedade/efeitos dos fármacos , Resposta de Saciedade/fisiologia , Eixo Encéfalo-Intestino/efeitos dos fármacos , Eixo Encéfalo-Intestino/fisiologia , Método Simples-Cego , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Glucose/metabolismo , Recompensa , Transdução de Sinais/efeitos dos fármacos , Humanos , Comportamento Alimentar/efeitos dos fármacos , Alimentos
16.
J Mol Endocrinol ; 70(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409629

RESUMO

Finnish-specific gene variant p.P50T/AKT2 (minor allele frequency (MAF) = 1.1%) is associated with insulin resistance and increased predisposition to type 2 diabetes. Here, we have investigated in vitro the impact of the gene variant on glucose metabolism and intracellular signalling in human primary skeletal muscle cells, which were established from 14 male p.P50T/AKT2 variant carriers and 14 controls. Insulin-stimulated glucose uptake and glucose incorporation into glycogen were detected with 2-[1,2-3H]-deoxy-D-glucose and D-[14C]-glucose, respectively, and the rate of glycolysis was measured with a Seahorse XFe96 analyzer. Insulin signalling was investigated with Western blotting. The binding of variant and control AKT2-PH domains to phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) was assayed using PIP StripsTM Membranes. Protein tyrosine kinase and serine-threonine kinase assays were performed using the PamGene® kinome profiling system. Insulin-stimulated glucose uptake and glycogen synthesis in myotubes in vitro were not significantly affected by the genotype. However, the insulin-stimulated glycolytic rate was impaired in variant myotubes. Western blot analysis showed that insulin-stimulated phosphorylation of AKT-Thr308, AS160-Thr642 and GSK3ß-Ser9 was reduced in variant myotubes compared to controls. The binding of variant AKT2-PH domain to PI(3,4,5)P3 was reduced as compared to the control protein. PamGene® kinome profiling revealed multiple differentially phosphorylated kinase substrates, e.g. calmodulin, between the genotypes. Further in silico upstream kinase analysis predicted a large-scale impairment in activities of kinases participating, for example, in intracellular signal transduction, protein translation and cell cycle events. In conclusion, myotubes from p.P50T/AKT2 variant carriers show multiple signalling alterations which may contribute to predisposition to insulin resistance and T2D in the carriers of this signalling variant.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Masculino , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Finlândia , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Transdução de Sinais/fisiologia , Glucose/metabolismo , Glicogênio/metabolismo , Fosforilação
17.
Metabolism ; 141: 155382, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36565992

RESUMO

BACKGROUND/PURPOSE: Studying renal glucose metabolism non-invasively in humans is an unmet need. Positron emission tomography (PET) is the current gold standard for measuring regional tissue glucose uptake rates, but the most widely used glucose analog ([18F]FDG) is not a good substrate for sodium-glucose cotransporters (SGLTs). As a consequence, [18F]FDG spills over into the urine and [18F]FDG-PET considerably underestimates published rates of whole renal glucose uptake obtained using the arterial-venous difference technique. Our aim was to assess whether [18F]FDG-PET can be used in the study of renal glucose metabolism in humans. METHODS: We measured individual [18F]FDG radioactivity in the urine and estimated intraluminal [18F]FDG radioactivity concentration; these values were used to correct renal [18F]FDG-PET data acquired ∼90 min from tracer injection under fasting conditions and during an insulin clamp in 9 lean and 16 obese subjects. RESULTS: We found that the corrected glucose uptake is consistently higher in the medulla than cortex and that both cortical and medullary glucose uptake are higher in lean than obese participants under both fasting and insulinized conditions. Moreover, cortical but not medullary glucose uptake is increased from the fasting to the insulinized condition. CONCLUSION: The data show for the first time that [18F]FDG-PET can still provide relevant physiological information on regional renal glucose uptake on the condition that [18F]FDG uptake is corrected for tubular radioactivity.


Assuntos
Fluordesoxiglucose F18 , Tomografia Computadorizada por Raios X , Humanos , Tomografia por Emissão de Pósitrons/métodos , Glucose/metabolismo , Obesidade , Compostos Radiofarmacêuticos
18.
J Neurosci Res ; 101(3): 327-337, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440544

RESUMO

We aimed to integrate genomic mapping from brain mRNA atlas with the protein expression from positron emission tomography (PET) scans of type 1 cannabinoid (CB1) receptor and to compare the predictive power of CB1 receptor with those of other neuroreceptor/transporters using a meta-analysis. Volume of distribution (VT ) from F18-FMPEP-d2 PET scans, CNR1 gene (Cannabinoid receptor 1) expression, and H3-CP55940 binding were calculated and correlation analysis was performed. Between VT of F18-FMPEP-d2 PET scans and CNR1 mRNA expression, moderate strength of correlation was observed (rho = .5067, p = .0337). Strong positive correlation was also found between CNR1 mRNA expression and H3-CP55940 binding (r = .6336, p = .0364), validating the finding between F18-FMPEP-d2 PET scans and CNR1 mRNA. The correlation between VT of F18-FMPEP-d2 PET scans and H3-CP55940 binding was marginally significant (r = .5025, p = .0563). From the meta-analysis, the correlation coefficient between mRNA expression and protein expressions ranged from -.10 to .99, with a pooled effect of .76. In conclusion, we observed the moderate to strong associations between gene and protein expression for CB1 receptor in the human brain, which was validated by autoradiography. We combined the autoradiographic finding with PET of CB1 receptor, producing the density atlas map of CB1 receptor. From the meta-analysis, the moderate to strong correlation was observed between mRNA expression and protein expressions across multiple genes. Further study is needed to investigate the relationship between multiple genes and in vivo proteins to improve and accelerate drug development.


Assuntos
Canabinoides , Receptor CB1 de Canabinoide , Humanos , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , RNA Mensageiro/metabolismo
19.
Eur J Nucl Med Mol Imaging ; 50(2): 266-274, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36166079

RESUMO

PURPOSE: Photoperiod determines the metabolic activity of brown adipose tissue (BAT) and affects the food intake and body mass of mammals. Sympathetic innervation of the BAT controls thermogenesis and facilitates physiological adaption to seasonal changes, but the exact mechanism remains elusive. Previous studies have shown that central opioid signaling regulates BAT thermogenesis, and that the expression of the brain mu-opioid receptor (MOR) varies seasonally. Therefore, it is important to know whether MOR expression in BAT shows seasonal variation. METHODS: We determined the effect of photoperiod on BAT MOR availability using [11C]carfentanil positron emission tomography (PET). Adult rats (n = 9) were repeatedly imaged under various photoperiods in order to simulate seasonal changes. RESULTS: Long photoperiod was associated with low MOR expression in BAT (ß = - 0.04, 95% confidence interval: - 0.07, - 0.01), but not in muscles. We confirmed the expression of MOR in BAT and muscle using immunofluorescence staining. CONCLUSION: Photoperiod affects MOR availability in BAT. Sympathetic innervation of BAT may influence thermogenesis via the peripheral MOR system. The present study supports the utility of [11C]carfentanil PET to study the peripheral MOR system.


Assuntos
Tecido Adiposo Marrom , Fotoperíodo , Receptores Opioides mu , Animais , Ratos , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Termogênese , Receptores Opioides mu/metabolismo
20.
Eur J Endocrinol ; 187(6): 917-928, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288097

RESUMO

Objective: To investigate whether alterations in brain glucose uptake (BGU), insulin action in the brain-liver axis and whole-body insulin sensitivity occur in young adults in pre-obese state. Methods: Healthy males with either high risk (HR; n = 19) or low risk (LR; n = 22) for developing obesity were studied with [18F]fluoro-d-glucose ([18F]FDG)-positron emission tomography during hyperinsulinemic-euglycemic clamp. Obesity risk was assessed according to BMI, physical activity and parental overweight/obesity and type 2 diabetes. Brain, skeletal muscle, brown adipose tissue (BAT), visceral adipose tissue (VAT) and abdominal and femoral s.c. adipose tissue (SAT) glucose uptake (GU) rates were measured. Endogenous glucose production (EGP) was calculated by subtracting the exogenous glucose infusion rate from the rate of disappearance of [18F]FDG. BGU was analyzed using statistical parametric mapping, and peripheral tissue activity was determined using Carimas Software imaging processing platform. Results: BGU was higher in the HR vs LR group and correlated inversely with whole-body insulin sensitivity (M value) in the HR group but not in the LR group. Insulin-suppressed EGP did not differ between the groups but correlated positively with BGU in the whole population, and the correlation was driven by the HR group. Skeletal muscle, BAT, VAT, abdominal and femoral SAT GU were lower in the HR group as compared to the LR group. Muscle GU correlated negatively with BGU in the HR group but not in the LR group. Conclusion: Increased BGU, alterations in insulin action in the brain-liver axis and decreased whole-body insulin sensitivity occur early in pre-obese state.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Masculino , Adulto Jovem , Humanos , Fluordesoxiglucose F18 , Técnica Clamp de Glucose , Obesidade , Insulina , Glucose , Encéfalo/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...