Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38917295

RESUMO

OBJECTIVE: This study aims to understand patient and healthcare provider perspectives on the integration and application of pharmacogenetics (PGx) testing in routine clinical practice. METHODS: Two anonymous online surveys were distributed globally for healthcare providers and patients respectively on the Qualtrics platform (version 3.24). The surveys were distributed through social platforms, email, and posters with QR codes from 27 October 2023 to 7 March 2024. The surveys evaluated participant familiarity with PGx, previous experience with PGx testing, perceived implementation challenges, and opinions on point-of-care (PoC) PGx testing devices. RESULTS: This study collected 78 responses from healthcare providers and 98 responses from patients. The results revealed that 64% of healthcare providers had some level of familiarity with PGx, however, PGx testing in clinical practice was low. The primary challenges identified by healthcare providers included limited access to testing and lack of knowledge on PGx test interpretation. In contrast, 52% of patient respondents were aware of PGx testing, with a significant association between awareness and positive opinions toward PGx. Both healthcare providers and patients recognized the value of PoC PGx testing devices, with 98% of healthcare providers and 71% of patients believing PoC devices would improve the accessibility and implementation of PGx testing. Comparative analysis revealed a statistically significant difference in PGx awareness between healthcare providers and patients, with providers being more informed. CONCLUSION: Improved PGx awareness, training, clinical guidelines, and PoC PGx testing devices may help promote the implementation of PGx-guided treatments in routine clinical practice.

2.
Br J Clin Pharmacol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38817198

RESUMO

AIM: Understanding how COVID-19 impacts the expression of clinically relevant drug metabolizing enzymes and membrane transporters (DMETs) is vital for addressing potential safety and efficacy concerns related to systemic and peripheral drug concentrations. This study investigates the impact of COVID-19 severity on DMETs expression and the underlying mechanisms to inform the design of precise clinical dosing regimens for affected patients. METHODS: Transcriptomics analysis of 102 DMETs, 10 inflammatory markers, and 12 xenosensing regulatory genes was conducted on nasopharyngeal swabs from 50 SARS-CoV-2 positive (17 outpatients, 16 non-ICU, and 17 ICU) and 13 SARS-CoV-2 negative individuals, clinically tested through qPCR, in the Greater Toronto area from October 2020 to October 2021. RESULTS: We observed a significant differential gene expression for 42 DMETs, 6 inflammatory markers, and 9 xenosensing regulatory genes. COVID-19 severity was associated with the upregulation of AKR1C1, MGST1, and SULT1E1, and downregulation of ABCC10, CYP3A43, and SLC29A4 expressions. Altogether, SARS-CoV-2-positive patients showed an upregulation in CYP2C9, CYP2C19, AKR1C1, SULT1B1, SULT2B1, and SLCO4A1 and downregulation in FMO5, MGST3, ABCC5, and SLCO4C1 compared with SARS-CoV-2 negative individuals. These dysregulations were associated with significant changes in the expression of inflammatory and xenosensing regulatory genes driven by the disease. GSTM3, PPARA, and AKR1C1 are potential biomarkers of the observed DMETs dysregulation pattern in nasopharyngeal swabs of outpatients, non-ICU, and ICU patients, respectively. CONCLUSION: The severity of COVID-19 is associated with the dysregulation of DMETs involved in processing commonly prescribed drugs, suggesting potential disease-drug interactions, especially for narrow therapeutic index drugs.

3.
Cancer Chemother Pharmacol ; 93(2): 89-105, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37594572

RESUMO

ImmunoGen developed mirvetuximab soravtansine as an antibody-drug conjugate comprising of a humanized anti-folate receptor-α (FRα) monoclonal antibody of IgG1k subtype, a cleavable linker, and a cytotoxic payload, DM4. Mirvetuximab soravtansine was granted accelerated approval by the US FDA on November 14, 2022, for the treatment of adult patients with FRα positive, platinum-resistant epithelial ovarian, fallopian tube or primary peritoneal cancer who have received 1-3 prior systemic treatment regimens. The approval of mirvetuximab soravtansine represents a breakthrough for addressing the unmet medical needs of ovarian cancer, especially for up to 80% of patients who relapse and become resistant to platinum-based chemotherapy, resulting in poor prognosis and limited treatment options. However, it is my impression that addressing several pharmacological factors could improve the safety and efficacy of mirvetuximab soravtansine. This article summarizes the current pharmacological profile of mirvetuximab soravtansine and provides an expert opinion on pharmacological strategies for optimizing its safety and efficacy profile for the treatment of platinum-resistant ovarian cancer.


Assuntos
Anticorpos Monoclonais Humanizados , Imunoconjugados , Maitansina , Neoplasias Ovarianas , Humanos , Adulto , Feminino , Prova Pericial , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/induzido quimicamente , Imunoconjugados/efeitos adversos , Platina/uso terapêutico , Maitansina/análogos & derivados
4.
Front Pharmacol ; 14: 1124693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180730

RESUMO

SARS-CoV-2-mediated interactions with drug metabolizing enzymes and membrane transporters (DMETs) in different tissues, especially lung, the main affected organ may limit the clinical efficacy and safety profile of promising COVID-19 drugs. Herein, we investigated whether SARS-CoV-2 infection could dysregulate the expression of 25 clinically relevant DMETs in Vero E6 cells and postmortem lung tissues from COVID-19 patients. Also, we assessed the role of 2 inflammatory and 4 regulatory proteins in modulating the dysregulation of DMETs in human lung tissues. We showed for the first time that SARS-CoV-2 infection dysregulates CYP3A4 and UGT1A1 at the mRNA level, as well as P-gp and MRP1 at the protein level, in Vero E6 cells and postmortem human lung tissues, respectively. We observed that at the cellular level, DMETs could potentially be dysregulated by SARS-CoV-2-associated inflammatory response and lung injury. We uncovered the pulmonary cellular localization of CYP1A2, CYP2C8, CYP2C9, and CYP2D6, as well as ENT1 and ENT2 in human lung tissues, and observed that the presence of inflammatory cells is the major driving force for the discrepancy in the localization of DMETs between COVID-19 and control human lung tissues. Because alveolar epithelial cells and lymphocytes are both sites of SARS-CoV-2 infection and localization of DMETs, we recommend further investigation of the pulmonary pharmacokinetic profile of current COVID-19 drug dosing regimen to improve clinical outcomes.

5.
Trends Pharmacol Sci ; 43(12): 1041-1054, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36374805

RESUMO

The development of clinically effective drugs that could complement existing vaccines is urgently needed to reduce the morbidity and mortality associated with COVID-19. Drug-metabolizing enzymes, membrane-associated drug transporters, and inflammatory responses can partly determine the safety and efficacy of COVID-19 drugs by controlling their concentrations in both the systemic circulation and in peripheral tissues. It is still unknown how these factors affect how well COVID-19 drugs work in the clinic. We explore how drug metabolism and transport, as well as SARS-CoV-2-associated inflammatory response at disease target sites, may affect the clinical outcomes of COVID-19 drugs. In addition, we provide expert opinion on potential strategies for overcoming the clinical pharmacology and pathophysiological obstacles to improve COVID-19 drug effectiveness.


Assuntos
Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Antivirais/uso terapêutico
6.
Xenobiotica ; 52(8): 916-927, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36282181

RESUMO

Aggregates of the protein α-synuclein are associated with pathophysiology of Parkinson's disease and are present in Lewy Bodies found in the brains of Parkinson's patients. We previously demonstrated that bifunctional compounds composed of caffeine linked via a six carbon chain to either 1-aminoindan (C8-6-I) or nicotine (C8-6-N) bind α-synuclein and protect yeast cells from α-synuclein mediated toxicity.A critical step in development of positron emission tomography (PET) probes for neurodegenerative diseases is evaluation of their metabolic stability. We determined that C8-6-I, and C8-6-N both undergo phase 1 P450 metabolism in mouse, rat, and human liver microsomes. We utilised this metabolic information to guide the design of fluorinated analogues for use as PET probes and determined that the fluorine in 19F-C8-6-I and 19F-C8-6-N is stable to P450 enzymes.We have developed and validated an analytical HPLC-UV method following FDA and EMA guidelines to measure in vitro phase 1 kinetics of these compounds and determine their Vmax, KM and CLint,u in mouse liver microsomes. We found that C8-6-I and 19F-C8-6-I have a two- to fourfold lower CLint,u than C8-6-N, and 19F-C8-6-N. Our approach shows a simple, specific, and effective system to design and develop compounds as PET probes.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Camundongos , Ratos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Cromatografia Líquida de Alta Pressão , Cinética , Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo
7.
Xenobiotica ; 52(8): 811-827, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36048000

RESUMO

Although liquid chromatography-tandem mass spectrometry is the gold standard analytical platform for the quantification of drugs, metabolites, and biomarkers in biological samples, it cannot localise them in target tissues.The localisation and quantification of drugs and/or their associated metabolites in target tissues is a more direct measure of local drug exposure, biodistribution, efficacy, and regional toxicity compared to the traditional substitute studies using plasma.Therefore, combining high spatial resolution imaging functionality with the superior selectivity and sensitivity of mass spectrometry into one analytical technique will be a valuable tool for targeted localisation and quantification of drugs, metabolites, and biomarkers in tissues.Mass spectrometry imaging (MSI) is a tagless analytical technique that allows for the direct localisation and quantification of drugs, metabolites, and biomarkers in biological tissues, and has been used extensively in pharmaceutical research.The overall goal of this current review is to provide a detailed description of the working principle of MSI and its application in pharmacokinetic studies encompassing absorption, distribution, metabolism, excretion, and toxicity processes, followed by a discussion of the strategies for addressing the challenges associated with the functional utility of MSI in pharmacokinetic studies that support drug development.


Assuntos
Espectrometria de Massas em Tandem , Distribuição Tecidual , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
8.
J Neurol ; 269(11): 5762-5786, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35831620

RESUMO

The development of disease-modifying drugs and differential diagnostic agents is an urgent medical need in Parkinson's disease. Despite the complex pathophysiological pathway, the misfolding of alpha-synuclein has been identified as a putative biomarker for detecting the onset and progression of the neurodegeneration associated with Parkinson's disease. Identifying the most appropriate alpha-synuclein-based diagnostic modality with clinical translation will revolutionize the diagnosis of Parkinson's. Likewise, molecules that target alpha-synuclein could alter the disease pathway that leads to Parkinson's and may serve as first-in class therapeutics compared to existing treatment options such as levodopa and dopamine agonist that do not necessarily modify the disease pathway. Notwithstanding the promising benefits that alpha-synuclein presents to therapeutics and diagnostics development for Parkinson's disease, finding ways to address potential challenges such as inadequate preclinical models, safety and efficacy will be paramount to achieving clinical translation. In this comprehensive review paper, we described the role of alpha-synuclein in the pathogenesis of Parkinson's disease, as well as how its structure and function relationship delineate disease onset and progression. We further discussed different alpha-synuclein-based diagnostic modalities including biomolecular assays and molecular imaging. Finally, we presented current small molecules and biologics that are being developed as disease-modifying drugs or positron emission tomography imaging probes for Parkinson's disease.


Assuntos
Produtos Biológicos , Doença de Parkinson , Biomarcadores , Agonistas de Dopamina , Humanos , Levodopa , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo
9.
Curr Drug Metab ; 23(6): 434-446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35726814

RESUMO

ATP-binding cassette (ABC) transporters play a critical role in protecting vital organs such as the brain and placenta against xenobiotics, as well as in modulating the pharmacological and toxicological profile of several drug candidates by restricting their penetration through cellular and tissue barriers. This review paper describes the structure and function of ABC transporters as well as the role of P-glycoprotein, multidrug resistance-associated protein 2 and breast cancer resistance protein in the disposition of drugs. Furthermore, a review of the in vitro and in vivo techniques for evaluating the interaction between drugs and ABC transporters is provided.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Desenvolvimento de Medicamentos , Feminino , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Gravidez
10.
Drug Metab Rev ; 53(3): 434-458, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34310243

RESUMO

A reliable, rapid, and effective bioanalytical method is essential for the determination of the pharmacokinetic, pharmacodynamic, and toxicokinetic parameters that inform the safety and efficacy profile of investigational drugs. The overall goal of bioanalytical method development is to elucidate the procedure and operating conditions under which a method can sufficiently extract, qualify, and/or quantify the analyte(s) of interest and/or their metabolites for the intended purpose. Given the difference in the physicochemical properties of small and large molecule drugs, different strategies need to be adopted for the development of an effective and efficient bioanalytical method. Herein, we provide an overview of different sample preparation strategies, analytical platforms, as well as procedures for achieving high throughput for bioanalysis of small and large molecule drugs.


Assuntos
Descoberta de Drogas , Humanos , Espectrometria de Massas/métodos
11.
Xenobiotica ; 51(8): 885-900, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34187286

RESUMO

A challenge in the development of novel 18F-labelled positron emission tomography (PET) imaging probes is identification of metabolically stable sites to incorporate the 18F radioisotope. Metabolic loss of 18F from PET probes in vivo can lead to misleading biodistribution data as displaced 18F can accumulate in various tissues.In this study we report on in vitro hepatic microsomal metabolism of novel caffeine containing bifunctional compounds (C8-6-I, C8-6-N, C8-6-C8) that can prevent in vitro aggregation of α-synuclein, which is associated with the pathophysiology of Parkinson's disease. The metabolic profile obtained guided us to synthesize stable isotope 19F-labelled analogues in which the fluorine was introduced at the metabolically stable N7 of the caffeine moiety.An in vitro hepatic microsomal metabolism study of the 19F-labelled analogues resulted in similar metabolites to the unlabelled compounds and demonstrated that the fluorine was metabolically stable, suggesting that these analogues are appropriate PET imaging probes. This straightforward in vitro strategy is valuable for avoiding costly stability failures when designing radiolabelled compounds for PET imaging.


Assuntos
Radioisótopos de Flúor , alfa-Sinucleína , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
12.
Drug Metab Rev ; 53(2): 171-172, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962522

RESUMO

The coronavirus disease (COVID-19) pandemic further revealed the barriers to accelerated discovery and development of transformative medicines for life threatening diseases. To effectively and efficiently respond to unmet medical needs, efforts should be directed towards revolutionizing the predictive capability of non-clinical surrogates that inform drug discovery and development programs. I developed this mini special issue amidst the COVID-19 pandemic to evaluate recent advancements and opportunities for four main subthemes that support drug discovery and development including prediction of metabolic pathways, translational pharmacokinetic and pharmacodynamic studies, pharmacogenomics, and trends in bioanalysis. Scientific papers in these areas were covered by investigators from the International Society for the Study of Xenobiotics New Investigator Group and other investigators. Advancement in the predictive capability of in silico, in vitro, and in vivo models used to determine the absorption, distribution, metabolism, excretion, and toxicity profile of investigational drugs can help offset the cost of unexpected safety and/or efficacy issues during clinical studies. Likewise, extensive application of pharmacogenomics in drug development and clinical care can help direct therapeutic benefits to the appropriate patient population with the overall goal of accelerating drug development and mitigating failed drug cost. Finally, I hope that the scientific contributions in this mini special issue will stimulate practical advancements across all aspects of basic science research that support drug discovery and development to help unlock the door to the next generation of drug discovery and development that features reduced failure rates and accelerated development.


Assuntos
Descoberta de Drogas/métodos , Desenvolvimento de Medicamentos/métodos , Humanos , Pandemias/prevenção & controle , Farmacogenética/métodos , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
13.
Drug Metab Rev ; 53(2): 253-278, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33820459

RESUMO

Pharmacogenetic research has resulted in the identification of a multitude of genetic variants that impact drug response or toxicity. These polymorphisms are mostly common and have been included as actionable information in the labels of numerous drugs. In addition to common variants, recent advances in Next Generation Sequencing (NGS) technologies have resulted in the identification of a plethora of rare and population-specific pharmacogenetic variations with unclear functional consequences that are not accessible by conventional forward genetics strategies. In this review, we discuss how comprehensive sequencing information can be translated into personalized pharmacogenomic advice in the age of NGS. Specifically, we provide an update of the functional impacts of rare pharmacogenetic variability and how this information can be leveraged to improve pharmacogenetic guidance. Furthermore, we critically discuss the current status of implementation of pharmacogenetic testing across drug development and layers of care. We identify major gaps and provide perspectives on how these can be minimized to optimize the utilization of NGS data for personalized clinical decision-support.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Farmacogenética , Desenvolvimento de Medicamentos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Farmacogenética/métodos , Polimorfismo Genético
14.
Rapid Commun Mass Spectrom ; 33(23): 1792-1803, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351020

RESUMO

RATIONALE: Novel bifunctional compounds composed of a caffeine scaffold attached to nicotine (C8 -6-N), 1-aminoindan (C8 -6-I), or caffeine (C8 -6-C8 ) were designed as therapeutics or diagnostics for Parkinson's disease (PD). In order to probe their pharmacological and toxicological profile, an appropriate analytical method is required. The goal of this study is to establish a tandem mass spectrometric fingerprint for the development of quantitative and qualitative methods that will aid future assessment of the in vitro and in vivo absorption, distribution, metabolism, excretion (ADME) and pharmacokinetic properties of these lead bifunctional compounds for PD. METHODS: Accurate mass measurement was performed using a hybrid quadrupole orthogonal time-of-flight mass spectrometer while multistage MS/MS and MS3 analyses were conducted using a triple quadrupole linear ion trap mass spectrometer. Both instruments are equipped with an electrospray ionization (ESI) source and were operated in the positive ion mode. The source and compound parameters were optimized for all three tested bifunctional compounds. RESULTS: The MS/MS analysis indicates that the fragmentation of C8 -6-N and C8 -6-I is driven by the dissociation of the nicotine and 1-aminoindan moieties, respectively, but not caffeine. A significant observation in the MS/MS fragmentation of C8 -6-C8 suggests that a previously reported loss of acetaldehyde during caffeine dissociation is instead a loss of CO2 . CONCLUSIONS: The collision-induced tandem mass spectrometry (CID-MS/MS) analysis of these novel bifunctional compounds revealed compound-specific diagnostic product ions and neutral losses for all three tested bifunctional compounds. The established MS/MS fingerprint will be applied to the future development of qualitative and quantitative methods.


Assuntos
Cafeína/análogos & derivados , Indanos/química , Nicotina/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...