Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 8(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817761

RESUMO

Mitochondrion, a maternally hereditary, subcellular organelle, is the site of the tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and oxidative phosphorylation (OXPHOS)-the basic processes of ATP production. Mitochondrial function plays a pivotal role in the development and pathology of different cancers. Disruption in its activity, like mutations in its TCA cycle enzymes, leads to physiological imbalances and metabolic shifts of the cell, which contributes to the progression of cancer. In this review, we explored the different significant mutations in the mitochondrial enzymes participating in the TCA cycle and the diseases, especially cancer types, that these malfunctions are closely associated with. In addition, this paper also discussed the different therapeutic approaches which are currently being developed to address these diseases caused by mitochondrial enzyme malfunction.

2.
Pflugers Arch ; 468(8): 1299-309, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27343012

RESUMO

Cereblon (CRBN) is a substrate receptor of the E3 ubiquitin ligase complex that has been linked to autosomal recessive non-syndromic mental retardation. Several key findings suggest diverse roles of CRBN, including its regulation of the large-conductance calcium- and voltage-activated potassium (BKCa) channels, regulation of thalidomide-binding proteins, and mediation of lenalidomide treatment in multiple myeloma. Recent studies also indicate that CRBN is involved in energy metabolism and negatively regulates AMP-activated protein kinase signaling. Mice with genetic depletion of CRBN are resistant to various stress conditions including a high-fat diet, endoplasmic reticulum stress, ischemia/reperfusion injury, and alcohol-related liver damage. In this review, we discuss the various roles of CRBN in human health and disease and suggest avenues for further research to enhance our basic knowledge and clinical application of CRBN.


Assuntos
Peptídeo Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Transporte/metabolismo , Humanos , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia
3.
Korean J Physiol Pharmacol ; 20(2): 201-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26937217

RESUMO

Although the antioxidant and cardioprotective effects of NecroX-5 on various in vitro and in vivo models have been demonstrated, the action of this compound on the mitochondrial oxidative phosphorylation system remains unclear. Here we verify the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity during hypoxia-reoxygenation (HR). Necrox-5 treatment (10 µM) and non-treatment were employed on isolated rat hearts during hypoxia/reoxygenation treatment using an ex vivo Langendorff system. Proteomic analysis was performed using liquid chromatography-mass spectrometry (LC-MS) and non-labeling peptide count protein quantification. Real-time PCR, western blot, citrate synthases and mitochondrial complex activity assays were then performed to assess heart function. Treatment with NecroX-5 during hypoxia significantly preserved electron transport chain proteins involved in oxidative phosphorylation and metabolic functions. NecroX-5 also improved mitochondrial complex I, II, and V function. Additionally, markedly higher peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC1α) expression levels were observed in NecroX-5-treated rat hearts. These novel results provide convincing evidence for the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity and in preserving PGC1α during cardiac HR injuries.

4.
BMB Rep ; 48(10): 571-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25772758

RESUMO

SB743921 is a potent inhibitor of the spindle protein kinesin and is being investigated in ongoing clinical trials for the treatment of myeloma. However, little is known about the molecular events underlying the induction of cell death in multiple myeloma (MM) by SB743921, alone or in combination treatment. Here, we report that SB743921 induces mitochondria-mediated cell death via inhibition of the NF-κB signaling pathway, but does not cause cell cycle arrest in KMS20 MM cells. SB743921-mediated inhibition of the NF-κB pathway results in reduced expression of SOD2 and Mcl-1, leading to mitochondrial dysfunction. We also found that combination treatment with SB743921 and bortezomib induces death in bortezomib-resistant KMS20 cells. Altogether, these data suggest that treatment with SB743921 alone or in combination with bortezomib offers excellent translational potential and promises to be a novel MM therapy.


Assuntos
Benzamidas/farmacologia , Cromonas/farmacologia , Cinesinas/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/administração & dosagem , Bortezomib/administração & dosagem , Bortezomib/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromonas/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Cinesinas/metabolismo , Mitocôndrias/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...