Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Med ; 19(5): e1003994, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550620

RESUMO

BACKGROUND: Neurological complications due to chikungunya virus (CHIKV) infection have been described in different parts of the world, with children being disproportionately affected. However, the burden of CHIKV-associated neurological disease in Africa is currently unknown and given the lack of diagnostic facilities in routine care it is possible that CHIKV is an unrecognized etiology among children with encephalitis or other neurological illness. METHODS AND FINDINGS: We estimated the incidence of CHIKV infection among children hospitalized with neurological disease in Kilifi County, coastal Kenya. We used reverse transcriptase polymerase chain reaction (RT-PCR) to systematically test for CHIKV in cerebrospinal fluid (CSF) samples from children aged <16 years hospitalized with symptoms of neurological disease at Kilifi County Hospital between January 2014 and December 2018. Clinical records were linked to the Kilifi Health and Demographic Surveillance System and population incidence rates of CHIKV infection estimated. There were 18,341 pediatric admissions for any reason during the 5-year study period, of which 4,332 (24%) had CSF collected. The most common clinical reasons for CSF collection were impaired consciousness, seizures, and coma (47%, 22%, and 21% of all collections, respectively). After acute investigations done for immediate clinical care, CSF samples were available for 3,980 admissions, of which 367 (9.2%) were CHIKV RT-PCR positive. Case fatality among CHIKV-positive children was 1.4% (95% CI 0.4, 3.2). The annual incidence of CHIKV-associated neurological disease varied between 13 to 58 episodes per 100,000 person-years among all children <16 years old. Among children aged <5 years, the incidence of CHIKV-associated neurological disease was 77 per 100,000 person-years, compared with 20 per 100,000 for cerebral malaria and 7 per 100,000 for bacterial meningitis during the study period. Because of incomplete case ascertainment due to children not presenting to hospital, or not having CSF collected, these are likely minimum estimates. Study limitations include reliance on hospital-based surveillance and limited CSF sampling in children in coma or other contraindications to lumbar puncture, both of which lead to under-ascertainment of incidence and of case fatality. CONCLUSIONS: In this study, we observed that CHIKV infections are relatively more common than cerebral malaria and bacterial meningitis among children hospitalized with neurological disease in coastal Kenya. Given the wide distribution of CHIKV mosquito vectors, studies to determine the geographic extent of CHIKV-associated neurological disease in Africa are essential.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Malária Cerebral , Meningites Bacterianas , Doenças do Sistema Nervoso , Adolescente , Animais , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Vírus Chikungunya/genética , Criança , Estudos de Coortes , Coma , Humanos , Incidência , Quênia/epidemiologia , Doenças do Sistema Nervoso/epidemiologia
2.
PLOS Glob Public Health ; 2(12): e0000914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962807

RESUMO

Chikungunya fever (CHIKF) is an arboviral illness that was first described in Tanzania (1952). In adults, the disease is characterised by debilitating arthralgia and arthritis that can persist for months, with severe illness including neurological complications observed in the elderly. However, the burden, distribution and clinical features of CHIKF in children are poorly described. We conducted a systematic literature review and meta-analysis to determine the epidemiology of CHIKF in children globally by describing its prevalence, geographical distribution, and clinical manifestations. We searched electronic databases for studies describing the epidemiology of CHIKF in children. We included peer-reviewed primary studies that reported laboratory confirmed CHIKF. We extracted information on study details, sampling approach, study participants, CHIKF positivity, clinical presentation and outcomes of CHIKF in children. The quality of included studies was assessed using Joanna Briggs Institute Critical Appraisal tool for case reports and National Institute of Health quality assessment tool for quantitative studies and case series. Random-effects meta-analysis was used to estimate the pooled prevalence of CHIKF among children by geographical location. We summarised clinical manifestations, laboratory findings, administered treatment and disease outcomes associated with CHIKF in children. We identified 2104 studies, of which 142 and 53 articles that met the inclusion criteria were included in the systematic literature review and meta-analysis, respectively. Most of the selected studies were from Asia (54/142 studies) and the fewest from Europe (5/142 studies). Included studies were commonly conducted during an epidemic season (41.5%) than non-epidemic season (5.1%). Thrombocytopenia was common among infected children and CHIKF severity was more prevalent in children <1 year. Children with undifferentiated fever before CHIKF was diagnosed were treated with antibiotics and/or drugs that managed specific symptoms or provided supportive care. CHIKF is a significant under-recognised and underreported health problem among children globally and development of drugs/vaccines should target young children.

3.
BMC Infect Dis ; 21(1): 186, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602147

RESUMO

BACKGROUND: Chikungunya fever (CHIKF) was first described in Tanzania in 1952. Several epidemics including East Africa have occurred, but there are no descriptions of longitudinal surveillance of endemic disease. Here, we estimate the incidence of CHIKF in coastal Kenya and describe the associated viral phylogeny. METHODS: We monitored acute febrile illnesses among 3500 children visiting two primary healthcare facilities in coastal Kenya over a 5-year period (2014-2018). Episodes were linked to a demographic surveillance system and blood samples obtained. Cross-sectional sampling in a community survey of a different group of 435 asymptomatic children in the same study location was done in 2016. Reverse-transcriptase PCR was used for chikungunya virus (CHIKV) screening, and viral genomes sequenced for phylogenetic analyses. RESULTS: We found CHIKF to be endemic in this setting, associated with 12.7% (95% CI 11.60, 13.80) of all febrile presentations to primary healthcare. The prevalence of CHIKV infections among asymptomatic children in the community survey was 0.7% (95% CI 0.22, 2.12). CHIKF incidence among children < 1 year of age was 1190 cases/100,000-person years and 63 cases/100,000-person years among children aged ≥10 years. Recurrent CHIKF episodes, associated with fever and viraemia, were observed among 19 of 170 children with multiple febrile episodes during the study period. All sequenced viral genomes mapped to the ECSA genotype albeit distinct from CHIKV strains associated with the 2004 East African epidemic. CONCLUSIONS: CHIKF may be a substantial public health burden in primary healthcare on the East African coast outside epidemic years, and recurrent infections are common.


Assuntos
Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Adolescente , Febre de Chikungunya/diagnóstico , Vírus Chikungunya/classificação , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Criança , Pré-Escolar , Estudos Transversais , Feminino , Febre/diagnóstico , Febre/epidemiologia , Febre/virologia , Genótipo , Humanos , Incidência , Lactente , Quênia/epidemiologia , Masculino , Filogenia , Prevalência , Estudos Prospectivos , Recidiva
4.
Wellcome Open Res ; 4: 179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32175480

RESUMO

Background: Zika virus (ZIKV) was first discovered in East Africa in 1947.  ZIKV has caused microcephaly in the Americas, but it is not known whether ZIKV is a cause of microcephaly in East Africa. Methods: We used surveillance data from 11,061 live births at Kilifi County Hospital in coastal Kenya between January 2012 and October 2016 to identify microcephaly cases and conducted a nested case-control study to determine risk factors for microcephaly. Gestational age at birth was estimated based on antenatal ultrasound scanning ('Scanned cohort') or last menstrual period ('LMP cohort', including births ≥37 weeks' gestation only). Controls were newborns with head circumference Z scores between >-2 and ≤2 SD that were compared to microcephaly cases in relation to ZIKV exposure and other maternal and newborn factors. Results: Of the 11,061 newborns, 214 (1.9%, 95%CI 1.69, 2.21) had microcephaly. Microcephaly prevalence was 1.0% (95%CI 0.64, 1.70, n=1529) and 2.1% (95%CI 1.81, 2.38, n=9532) in the scanned and LMP cohorts, respectively. After excluding babies <2500 g (n=1199) in the LMP cohort the prevalence was 1.1% (95%CI 0.93, 1.39). Microcephaly showed an association with being born small for gestational age (p<0.001) but not with ZIKV neutralising antibodies (p=0.6) or anti-ZIKV NS1 IgM response (p=0.9). No samples had a ZIKV neutralising antibody titre that was at least fourfold higher than the corresponding dengue virus (DENV) titre. No ZIKV or other flavivirus RNA was detected in cord blood from cases or controls. Conclusions: Microcephaly was prevalent in coastal Kenya, but does not appear to be related to ZIKV exposure; the ZIKV response observed in our study population was largely due to cross-reactive responses to DENV or other related flaviviruses. Further research into potential causes and the clinical consequences of microcephaly in this population is urgently needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...