Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 371: 237-257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815705

RESUMO

Nanodrug delivery systems (NDDS) continue to be explored as novel strategies enhance therapy outcomes and combat microbial resistance. The need for the formulation of smart drug delivery systems for targeting infection sites calls for the engineering of responsive chemical designs such as dynamic covalent bonds (DCBs). Stimuli response due to DCBs incorporated into nanosystems are emerging as an alternative way to target infection sites, thus enhancing the delivery of antibacterial agents. This leads to the eradication of bacterial infections and the reduction of antimicrobial resistance. Incorporating DCBs on the backbone of the nanoparticles endows the systems with several properties, including self-healing, controlled disassembly, and stimuli responsiveness, which are beneficial in the delivery and release of the antimicrobial at the infection site. This review provides a comprehensive and current overview of conventional DCBs-based nanosystems, stimuli-responsive DCBs-based nanosystems, and targeted DCBs-based nanosystems that have been reported in the literature for antibacterial delivery. The review emphasizes the DCBs used in their design, the nanomaterials constructed, the drug release-triggering stimuli, and the antibacterial efficacy of the reported DCBs-based nanosystems. Additionally, the review underlines future strategies that can be used to improve the potential of DCBs-based nanosystems to treat bacterial infections and overcome antibacterial resistance.


Assuntos
Antibacterianos , Infecções Bacterianas , Sistemas de Liberação de Medicamentos , Infecções Bacterianas/tratamento farmacológico , Humanos , Antibacterianos/administração & dosagem , Antibacterianos/química , Animais , Nanopartículas/química , Nanopartículas/administração & dosagem , Liberação Controlada de Fármacos , Bactérias/efeitos dos fármacos
2.
Int J Biol Macromol ; 262(Pt 1): 130046, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336334

RESUMO

Bacterial sepsis is a mortal syndromic disease characterized by a complex pathophysiology that hinders effective targeted therapy. This study aimed to develop multifunctional, biomimetic and pH-responsive ciprofloxacin-loaded chitosan (CS)/sodium deoxycholic acid (SDC) nanoplexes (CS/SDC) nanoplexes with the ability to target and modulate the TLR4 pathway, activated during sepsis. The formulated nanoplexes were characterized in terms of physicochemical properties, in silico and in vitro potential biological activities. The optimal formulation showed good biocompatibility and stability with appropriate physicochemical parameters. The surface charge changed from negative at pH 7.4 to positive at pH 6.0 accompanied with a significantly faster release of CIP at pH 6.0 compared to 7.4. The biomimicry was elucidated by in silico tools and MST and results confirmed strong binding between the system and TLR4. Furthermore, the system revealed 4- and 2-fold antibacterial enhancement at acidic pH, and 3- and 4-fold better antibiofilm efficacy against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (P. aeruginosa) respectively, compared to bare CIP. In addition, enhanced bacterial efflux pump inhibition was demonstrated by CS/SDC nanoplexes. Finally, the developed nanosystem showed excellent antioxidant activity against DPPH radicals. Taken together, the study confirmed the multi-functionalities of CS/SDC nanoplexes and their potential benefits in improving bacterial sepsis therapy.


Assuntos
Quitosana , Staphylococcus aureus Resistente à Meticilina , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Quitosana/química , Biomimética , Receptor 4 Toll-Like , Antibacterianos/química , Concentração de Íons de Hidrogênio
3.
Int J Pharm ; 644: 123346, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37633537

RESUMO

Sepsis, a complication of dysregulated host immune systemic response to an infection, is life threatening and causes multiple organ injuries. Sepsis is recognized by WHO as a big contributor to global morbidity and mortality. The heterogeneity in sepsis pathophysiology, antimicrobial resistance threat, the slowdown in the development of antimicrobials, and limitations of conventional dosage forms jeopardize the treatment of sepsis. Drug delivery nanosystems are promising tools to overcome some of these challenges. Among the drug delivery nanosystems, inflammation-responsive nanosystems have attracted considerable interest in sepsis treatment due to their ability to respond to specific stimuli in the sepsis microenvironment to release their payload in a precise, targeted, controlled, and rapid manner compared to non-responsive nanosystems. These nanosystems posit superior therapeutic potential to enhance sepsis treatment. This review critically evaluates the recent advances in the design of drug delivery nanosystems that are inflammation responsive and their potential in enhancing sepsis treatment. The sepsis microenvironment's unique features, such as acidic pH, upregulated receptors, overexpressed enzymes, and enhanced oxidative stress, that form the basis for their design have been adequately discussed. These inflammation-responsive nanosystems have been organized into five classes namely: Receptor-targeted nanosystems, pH-responsive nanosystems, redox-responsive nanosystems, enzyme-responsive nanosystems, and multi-responsive nanosystems. Studies under each class have been thematically grouped and discussed with an emphasis on the polymers used in their design, nanocarriers, key characterization, loaded actives, and key findings on drug release and therapeutic efficacy. Further, this information is concisely summarized into tables and supplemented by inserted figures. Additionally, this review adeptly points out the strengths and limitations of the studies and identifies research avenues that need to be explored. Finally, the challenges and future perspectives on these nanosystems have been thoughtfully highlighted.


Assuntos
Sistemas de Liberação de Medicamentos , Sepse , Humanos , Sepse/tratamento farmacológico , Suplementos Nutricionais , Liberação Controlada de Fármacos , Inflamação/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...