Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712063

RESUMO

Background: The microbiome likely plays a role in tuberculosis (TB) pathogenesis. We evaluated the site-of-disease microbiome and predicted metagenome in people with presumptive tuberculous pericarditis, a major cause of mortality, and explored for the first time, the interaction between its association with C-reactive protein (CRP), a potential diagnostic biomarker and the site-of-disease microbiome in extrapulmonary TB. Methods: People with effusions requiring diagnostic pericardiocentesis (n=139) provided background sampling controls and pericardial fluid (PF) for 16S rRNA gene sequencing analysed using QIIME2 and PICRUSt2. Blood was collected to measure CRP. Results: PF from people with definite (dTB, n=91), probable (pTB, n=25), and non- (nTB, n=23) tuberculous pericarditis differed in ß-diversity. dTBs were, vs. nTBs, Mycobacterium-, Lacticigenium-, and Kocuria- enriched. Within dTBs, HIV-positives were Mycobacterium-, Bifidobacterium- , Methylobacterium- , and Leptothrix -enriched vs. HIV-negatives and HIV-positive dTBs on ART were Mycobacterium - and Bifidobacterium -depleted vs. those not on ART. Compared to nTBs, dTBs exhibited short-chain fatty acid (SCFA) and mycobacterial metabolism microbial pathway enrichment. People with additional non-pericardial involvement had differentially PF taxa (e.g., Mycobacterium -enrichment and Streptococcus -depletion associated with pulmonary infiltrates). Mycobacterium reads were in 34% (31/91), 8% (2/25) and 17% (4/23) of dTBs, pTBs, and nTBs, respectively. ß-diversity differed between patients with CRP above vs. below the median value ( Pseudomonas -depleted). There was no correlation between enriched taxa in dTBs and CRP. Conclusions: PF is compositionally distinct based on TB status, HIV (and ART) status and dTBs are enriched in SCFA-associated taxa. The clinical significance of these findings, including mycobacterial reads in nTBs and pTBs, requires evaluation.

2.
Res Sq ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38645218

RESUMO

Background: Latent tuberculosis infection (LTBI) is common in people living with HIV (PLHIV) in high TB burden settings. Active TB is associated with specific stool taxa; however, little is known about the stool microbiota and LTBI, including in PLHIV. Method: Within a parent study that recruited adult females with HIV from Cape Town, South Africa into predefined age categories (18-25, 35-60 years), we characterised the stool microbiota of those with [interferon-γ release assay (IGRA)- and tuberculin skin test (TST)-positive] or without (IGRA- and TST- negative) LTBI (n=25 per group). 16S rRNA DNA sequences were analysed using QIIME2, Dirichlet Multinomial Mixtures, DESeq2 and PICRUSt2. Results: No α- or ß-diversity differences occurred by LTBI status; however, LTBI-positives were Faecalibacterium-, Blautia-, Gemmiger-, Bacteroides-enriched and Moryella-, Atopobium-, Corynebacterium-, Streptococcus-depleted. Inferred metagenome data showed LTBI-negative-enriched pathways included several involved in methylglyoxal degradation, L-arginine, putrescine, 4-aminobutanoate degradation and L-arginine and ornithine degradation. Stool from LTBI-positives demonstrated differential taxa abundance based on a quantitative response to antigen stimulation (Acidaminococcus-enrichment and Megamonas-, Alistipes-, and Paraprevotella-depletion associated with higher IGRA or TST responses, respectively). In LTBI-positives, older people had different ß-diversities than younger people whereas, in LTBI-negatives, no differences occurred across age groups. Conclusion: Amongst female PLHIV, those with LTBI had, vs. those without LTBI, Faecalibacterium, Blautia, Gemmiger, Bacteriodes-enriched, which are producers of short chain fatty acids. Taxonomic differences amongst people with LTBI occurred according to quantitative response to antigen stimulation and age. These data enhance our understanding of the microbiome's potential role in LTBI.

3.
Res Sq ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38659922

RESUMO

Background: Tuberculosis (TB), a major cause of disease and antimicrobial resistance, is spread via aerosols. Aerosols have diagnostic potential and airborne-microbes other than Mycobacterium tuberculosis complex (MTBC) may influence transmission. We evaluated whether PneumoniaCheck (PMC), a commercial aerosol collection device, captures MTBC and the aeromicrobiome of people with TB. Methods: PMC was done in sputum culture-positive people (≥30 forced coughs each, n=16) pre-treatment and PMC air reservoir (bag, corresponding to upper airways) and filter (lower airways) washes underwent Xpert MTB/RIF Ultra (Ultra) and 16S rRNA gene sequencing (sequencing also done on sputum). In a subset (n=6), PMC microbiota (bag, filter) was compared to oral washes and bronchoalveolar lavage fluid (BALF). Findings: 54% (7/13) bags and 46% (6/14) filters were Ultra-positive. Sequencing read counts and microbial diversity did not differ across bags, filters, and sputum. However, microbial composition in bags (Sphingobium-, Corynebacterium-, Novosphingobium-enriched) and filters (Mycobacterium-, Sphingobium-, Corynebacterium-enriched) each differed vs. sputum. Furthermore, sequencing only detected Mycobacterium in bags and filters but not sputum. In the subset, bag and filter microbial diversity did not differ vs. oral washes or BALF but microbial composition differed. Bags vs. BALF were Sphingobium-enriched and Mycobacterium-, Streptococcus-, and Anaerosinus-depleted (Anaerosinus also depleted in filters vs. BALF). Compared to BALF, none of the aerosol-enriched taxa were enriched in oral washes or sputum. Interpretation: PMC captures aerosols with Ultra-detectable MTBC and MTBC is more detectable in aerosols than sputum by sequencing. The aeromicrobiome is distinct from sputum, oral washes and BALF and contains differentially-enriched lower respiratory tract microbes.

4.
Thorax ; 78(3): 297-308, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598079

RESUMO

BACKGROUND: Lymphadenitis is the most common extrapulmonary tuberculosis (EPTB) manifestation. The microbiome is important to human health but uninvestigated in EPTB. We profiled the site-of-disease lymph node microbiome in tuberculosis lymphadenitis (TBL). METHODS: Fine-needle aspiration biopsies were collected from 158 pretreatment presumptive TBL patients in Cape Town, South Africa. 16S Illumina MiSeq rRNA gene sequencing was done. RESULTS: We analysed 89 definite TBLs (dTBLs) and 61 non-TBLs (nTBLs), which had similar α- but different ß-diversities (p=0.001). Clustering identified five lymphotypes prior to TB status stratification: Mycobacterium-dominant, Prevotella-dominant and Streptococcus-dominant lymphotypes were more frequent in dTBLs whereas a Corynebacterium-dominant lymphotype and a fifth lymphotype (no dominant taxon) were more frequent in nTBLs. When restricted to dTBLs, clustering identified a Mycobacterium-dominant lymphotype with low α-diversity and non-Mycobacterium-dominated lymphotypes (termed Prevotella-Corynebacterium, Prevotella-Streptococcus). The Mycobacterium dTBL lymphotype was associated with HIV-positivity and features characteristic of severe lymphadenitis (eg, larger nodes). dTBL microbial communities were enriched with potentially proinflammatory microbial short-chain fatty acid metabolic pathways (propanoate, butanoate) vs nTBLs. 11% (7/61) of nTBLs had Mycobacterium reads BLAST-confirmed as Mycobacterium tuberculosis complex. CONCLUSIONS: TBL at the site-of-disease is not microbially homogeneous. Distinct microbial community clusters exist that, in our setting, are associated with different clinical characteristics, and immunomodulatory potentials. Non-Mycobacterium-dominated dTBL lymphotypes, which contain taxa potentially targeted by TB treatment, were associated with milder, potentially earlier stage disease. These investigations lay foundations for studying the microbiome's role in lymphatic TB. The long-term clinical significance of these lymphotypes requires prospective validation.


Assuntos
Linfadenite , Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Humanos , Mycobacterium tuberculosis/genética , África do Sul/epidemiologia , Tuberculose dos Linfonodos/complicações , Tuberculose dos Linfonodos/microbiologia , Tuberculose dos Linfonodos/patologia , Biópsia por Agulha Fina , Linfadenite/complicações
5.
J Infect ; 86(1): 24-32, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375640

RESUMO

BACKGROUND: Identification of an accurate, low-cost triage test for pulmonary TB among people presenting to healthcare facilities is an urgent global research priority. We assessed the diagnostic accuracy and clinical utility of C-reactive protein (CRP) for TB triage among symptomatic adult outpatients, irrespective of HIV status. METHODS: We prospectively enrolled adults reporting at least one (for people with HIV) or two (for people without HIV) symptoms of cough, fever, night sweats, or weight loss at two TB clinics in Cape Town, South Africa. Participants provided sputum for culture and Xpert MTB/RIF Ultra. We evaluated the diagnostic accuracy of CRP (measured using a laboratory-based assay) against a TB-culture reference standard as the area under the receiver operating characteristic curve (AUROC), and sensitivity and specificity at pre-specified thresholds. We assessed clinical utility using decision curve analysis and benchmarked against WHO recommendations. RESULTS: Of 932 included individuals, 255 (27%) had culture-confirmed pulmonary TB and 389 (42%) were living with HIV. CRP demonstrated an AUROC of 0·80 (95% confidence interval 0·77-0·83), with sensitivity 93% (89-95%) and specificity 54% (50-58%) using a primary cut-off of ≥10 mg/L. Performance was similar among people with HIV to those without. In decision curve analysis, CRP-based triage offered greater clinical utility than confirmatory testing for all up to a number willing to test threshold of 20 confirmatory tests per true positive pulmonary TB case diagnosed (threshold probability 5%). If it is possible to perform more confirmatory tests than this, a 'confirmatory test for all' strategy performed better. CONCLUSIONS: CRP achieved the WHO-defined sensitivity, but not specificity, targets for a triage test for pulmonary TB and showed evidence of clinical utility among symptomatic outpatients, irrespective of HIV status. FUNDING: South African Medical Research Council, EDCTP2, Royal Society Newton Advanced Fellowship, Wellcome Trust, National Institute of Health Research, Royal College of Physicians.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose Pulmonar , Adulto , Humanos , Proteína C-Reativa , África do Sul/epidemiologia , Triagem , Tuberculose Pulmonar/diagnóstico , Sensibilidade e Especificidade , Escarro , Infecções por HIV/complicações
6.
J Clin Microbiol ; 59(12): e0131621, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34469182

RESUMO

Tuberculosis lymphadenitis (TBL) is the most common extrapulmonary tuberculosis (EPTB) manifestation. Xpert MTB/RIF Ultra (Ultra) is a World Health Organization-endorsed diagnostic test, but performance data for TBL, including on noninvasive specimens, are limited. Fine-needle aspiration biopsy specimens (FNABs) from outpatients (≥18 years) with presumptive TBL (n = 135) underwent (i) routine Xpert MTB/RIF testing (later with Ultra once programmatically available), (ii) MGIT 960 culture (if Xpert or Ultra negative or rifampicin resistant), and (iii) study Ultra testing. Concentrated paired urine specimens underwent Ultra testing. Primary analyses used a microbiological reference standard (MRS). In a head-to-head comparison (n = 92) of an FNAB study Ultra and Xpert, Ultra had increased sensitivity (91% [95% confidence interval: 79, 98] versus 72% [57, 84]; P = 0.016) and decreased specificity (76% [61, 87] versus 93% [82, 99]; P = 0.020) and diagnosed patients not on treatment. Neither HIV nor alternative reference standards affected sensitivity and specificity. In patients with both routine and study Ultra tests, the latter detected more cases (+20% [0, 42]; P = 0.034), and false-negative study Ultra results were more inhibited than true-positive results. Study Ultra false positives had less mycobacterial DNA than true positives (trace-positive proportions, 59% [13/22] versus 12% [5/51]; P < 0.001). "Trace" exclusion or recategorization removed potential benefits offered over Xpert. Urine Ultra tests had low sensitivity (18% [7, 35]). Ultra testing on FNABs is highly sensitive and detects more TBL than Xpert (Ultra still missed some cases due in part to inhibition). Patients with FNAB Ultra-positive "trace" results, most of whom will be culture negative, may require additional clinical investigation. Urine Ultra testing could reduce the number of patients needing invasive sampling.


Assuntos
Antibióticos Antituberculose , Infecções por HIV , Linfadenite , Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Tuberculose Pulmonar , Antibióticos Antituberculose/uso terapêutico , Infecções por HIV/complicações , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Humanos , Linfadenite/tratamento farmacológico , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Sensibilidade e Especificidade , Tuberculose dos Linfonodos/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico
7.
EBioMedicine ; 67: 103374, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33975252

RESUMO

BACKGROUND: The relationship between tuberculosis (TB), one of the leading infectious causes of death worldwide, and the microbiome, which is critical for health, is poorly understood. METHODS: To identify potential microbiome-host interactions, profiling of the oral, sputum and stool microbiota [n = 58 cases, n = 47 culture-negative symptomatic controls (SCs)] and whole blood transcriptome were done in pre-treatment presumptive pulmonary TB patients. This was a cross-sectional study. Microbiota were also characterised in close contacts of cases (CCCs, n = 73) and close contacts of SCs (CCSCs, n = 82) without active TB. FINDINGS: Cases and SCs each had similar α- and ß-diversities in oral washes and sputum, however, ß-diversity differed in stool (PERMANOVA p = 0•035). Cases were enriched with anaerobes in oral washes, sputum (Paludibacter, Lautropia in both) and stool (Erysipelotrichaceae, Blautia, Anaerostipes) and their stools enriched in microbial genes annotated as amino acid and carbohydrate metabolic pathways. In pairwise comparisons with their CCCs, cases had Megasphaera-enriched oral and sputum microbiota and Bifidobacterium-, Roseburia-, and Dorea-depleted stools. Compared to their CCSCs, SCs had reduced α-diversities and many differential taxa per specimen type. Cases differed transcriptionally from SCs in peripheral blood (PERMANOVA p = 0•001). A co-occurrence network analysis showed stool taxa, Erysipelotrichaceae and Blautia, to negatively co-correlate with enriched "death receptor" and "EIF2 signalling" pathways whereas Anaerostipes positively correlated with enriched "interferon signalling", "Nur77 signalling" and "inflammasome" pathways; all of which are host pathways associated with disease severity. In contrast, none of the taxa enriched in SCs correlated with host pathways. INTERPRETATION: TB-specific microbial relationships were identified in oral washes, induced sputum, and stool from cases before the confounding effects of antibiotics. Specific anaerobes in cases' stool predict upregulation of pro-inflammatory immunological pathways, supporting the gut microbiota's role in TB. FUNDING: European & Developing Countries Clinical Trials Partnership, South African-Medical Research Council, National Institute of Allergy and Infectious Diseases.


Assuntos
Microbioma Gastrointestinal , Inflamassomos/metabolismo , Interferons/metabolismo , Tuberculose Pulmonar/microbiologia , Adulto , Bactérias Anaeróbias/patogenicidade , Feminino , Humanos , Inflamassomos/genética , Interferons/genética , Masculino , Transdução de Sinais , Transcriptoma , Tuberculose Pulmonar/metabolismo , Regulação para Cima
8.
Lancet Respir Med ; 8(4): 407-419, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32178775

RESUMO

BACKGROUND: Blood transcriptional signatures are candidates for non-sputum triage or confirmatory tests of tuberculosis. Prospective head-to-head comparisons of their diagnostic accuracy in real-world settings are necessary to assess their clinical use. We aimed to compare the diagnostic accuracy of candidate transcriptional signatures identified by systematic review, in a setting with a high burden of tuberculosis and HIV. METHODS: We did a prospective observational study nested within a diagnostic accuracy study of sputum Xpert MTB/RIF (Xpert) and Xpert MTB/RIF Ultra (Ultra) tests for pulmonary tuberculosis. We recruited consecutive symptomatic adults aged 18 years or older self-presenting to a tuberculosis clinic in Cape Town, South Africa. Participants provided blood for RNA sequencing, and sputum samples for liquid culture and molecular testing using Xpert and Ultra. We assessed the diagnostic accuracy of candidate blood transcriptional signatures for active tuberculosis (including those intended to distinguish active tuberculosis from other diseases) identified by systematic review, compared with culture or Xpert MTB/RIF positivity as the standard reference. In our primary analysis, patients with tuberculosis were defined as those with either a positive liquid culture or Xpert result. Patients with missing blood RNA or sputum results were excluded. Our primary objective was to benchmark the diagnostic accuracy of candidate transcriptional signatures against the WHO target product profile (TPP) for a tuberculosis triage test. FINDINGS: Between Feb 12, 2016, and July 18, 2017, we obtained paired sputum and RNA sequencing data from 181 participants, 54 (30%) of whom had confirmed pulmonary tuberculosis. Of 27 eligible signatures identified by systematic review, four achieved the highest diagnostic accuracy with similar area under the receiver operating characteristic curves (Sweeney3: 90·6% [95% CI 85·6-95·6]; Kaforou25: 86·9% [80·9-92·9]; Roe3: 86·9% [80·3-93·5]; and BATF2: 86·8% [80·6-93·1]), independent of age, sex, HIV status, previous tuberculosis, or sputum smear result. At test thresholds that gave 70% specificity (the minimum WHO TPP specificity for a triage test), these four signatures achieved sensitivities between 83·3% (95% CI 71·3-91·0) and 90·7% (80·1-96·0). No signature met the optimum criteria, of 95% sensitivity and 80% specificity proposed by WHO for a triage test, or the minimum criteria (of 65% sensitivity and 98% specificity) for a confirmatory test, but all four correctly identified Ultra-positive, culture-negative patients. INTERPRETATION: Selected blood transcriptional signatures met the minimum WHO benchmarks for a tuberculosis triage test but not for a confirmatory test. Further development of the signatures is warranted to investigate their possible effects on clinical and health economic outcomes as part of a triage strategy, or when used as add-on confirmatory test in conjunction with the highly sensitive Ultra test for Mycobacterium tuberculosis DNA. FUNDING: Royal Society Newton Advanced Fellowship, Wellcome Trust, National Institute of Health Research, and UK Medical Research Council.


Assuntos
Mycobacterium tuberculosis/genética , RNA Bacteriano/sangue , Fatores de Transcrição/sangue , Triagem/métodos , Tuberculose Pulmonar/diagnóstico , Adulto , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Sensibilidade e Especificidade , Análise de Sequência de RNA , África do Sul , Escarro/microbiologia
9.
Lancet Respir Med ; 7(10): 892-906, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30910543

RESUMO

The diverse microbial communities within our bodies produce metabolites that modulate host immune responses. Even the microbiome at distal sites has an important function in respiratory health. However, the clinical importance of the microbiome in tuberculosis, the biggest infectious cause of death worldwide, is only starting to be understood. Here, we critically review research on the microbiome's association with pulmonary tuberculosis. The research indicates five main points: (1) susceptibility to infection and progression to active tuberculosis is altered by gut Helicobacter co-infection, (2) aerosol Mycobacterium tuberculosis infection changes the gut microbiota, (3) oral anaerobes in the lung make metabolites that decrease pulmonary immunity and predict progression, (4) the increased susceptibility to reinfection of patients who have previously been treated for tuberculosis is likely due to the depletion of T-cell epitopes on commensal gut non-tuberculosis mycobacteria, and (5) the prolonged antibiotic treatment required for cure of tuberculosis has long-term detrimental effects on the microbiome. We highlight knowledge gaps, considerations for addressing these knowledge gaps, and describe potential targets for modifying the microbiome to control tuberculosis.


Assuntos
Microbioma Gastrointestinal/imunologia , Microbiota/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/microbiologia , Antituberculosos/uso terapêutico , Humanos , Imunidade/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...