Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 15(13): 2739-43, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25997119

RESUMO

We demonstrate how nanofluidic channels can be used as a tool to rapidly determine the number and sizes of plasmids in bacterial isolates. Each step can be automated at low cost, opening up opportunities for general use in microbiology labs.


Assuntos
Bactérias/genética , Plasmídeos/metabolismo , Benzoxazóis/química , DNA Bacteriano/análise , DNA Bacteriano/química , Nanotecnologia/instrumentação , Compostos de Quinolínio/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-26764721

RESUMO

The extension of DNA confined to nanochannels has been studied intensively and in detail. However, quantitative comparisons between experiments and model calculations are difficult because most theoretical predictions involve undetermined prefactors, and because the model parameters (contour length, Kuhn length, effective width) are difficult to compute reliably, leading to substantial uncertainties. Here we use a recent asymptotically exact theory for the DNA extension in the "extended de Gennes regime" that allows us to compare experimental results with theory. For this purpose, we performed experiments measuring the mean DNA extension and its standard deviation while varying the channel geometry, dye intercalation ratio, and ionic strength of the buffer. The experimental results agree very well with theory at high ionic strengths, indicating that the model parameters are reliable. At low ionic strengths, the agreement is less good. We discuss possible reasons. In principle, our approach allows us to measure the Kuhn length and the effective width of a single DNA molecule and more generally of semiflexible polymers in solution.


Assuntos
DNA/química , Modelos Moleculares , Nanotecnologia , Bacteriófago lambda , DNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...