Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Thromb Res ; 129(4): e51-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22283974

RESUMO

INTRODUCTION: Arterial thrombi contain more platelets than venous thrombi and are more resistant to fibrinolysis. This resistance could partly be due to plasminogen activator inhibitor 1 (PAI-1) secreted by platelets. The aim of this study was to elucidate differences between thrombin receptors protease-activated receptor (PAR) 1 and 4 and platelet storage, secretion and synthesis of platelet PAI-1, as compared to other platelet α-granule proteins such as VEGF and endostatin. MATERIALS AND METHODS: Human isolated platelets were incubated with thrombin (0.5 U/ml), PAR1-activating peptide (AP) (0.4-30 µM) or PAR4-AP (1.5-300 µM) for up to 24 hours. ELISA, western blot and fluorescence microscopy were used to measure secretion, contents and localization of PAI-1, VEGF and endostatin. RESULTS: Our results show that PAI-1 and VEGF might be co-localized and that endostatin does not co-localize with either PAI-1 or VEGF. PAI-1 and VEGF show a similar secretion pattern, being more sensitive to low grade PAR1 activation, but secretion was also observed with higher concentrations of PAR4-APs. PAI-1 is secreted in an active form. PAI-1 mRNA was found in platelets, and elevated levels of PAI-1 were detected after 24 hours incubation of platelets. CONCLUSIONS: PAI-1 and VEGF, but not endostatin, might be stored in the same α-granule in human platelets. PAI-1 and VEGF also show a similar secretion pattern, being more sensitive to PAR1 than to PAR4 activation, but the secretion is not exclusively selective. Our results also show that platelet PAI-1 is increased if incubated for 24 hours, both with addition of PAR1-activating peptide and without activation, which could indicate de novo synthesis.


Assuntos
Plaquetas/metabolismo , Endostatinas/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Trombina/farmacocinética , Células Cultivadas , Humanos
2.
Biochem J ; 436(2): 469-80, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21391917

RESUMO

PARs (protease-activated receptors) 1 and 4 belong to the family of G-protein-coupled receptors which induce both G(α12/13) and G(αq) signalling. By applying the specific PAR1- and PAR4-activating hexapeptides, SFLLRN and AYPGKF respectively, we found that aggregation of isolated human platelets mediated via PAR1, but not via PAR4, is abolished upon homologous receptor activation in a concentration- and time-dependent fashion. This effect was not due to receptor internalization, but to a decrease in Ca²âº mobilization, PKC (protein kinase C) signalling and α-granule secretion, as well as to a complete lack of dense granule secretion. Interestingly, subthreshold PAR4 activation rapidly abrogated PAR1 signalling desensitization by differentially reconstituting these affected signalling events and functional responses, which was sufficient to re-establish aggregation. The lack of ADP release and P2Y12 receptor-induced G(αi) signalling accounted for the loss of the aggregation response, as mimicking G(αi/z) signalling with 2-MeS-ADP (2-methylthioadenosine-5'-O-diphosphate) or epinephrine (adrenaline) could substitute for intermediate PAR4 activation. Finally, we found that the re-sensitization of PAR1 signalling-induced aggregation via PAR4 relied on PKC-mediated release of both ADP from dense granules and fibrinogen from α-granules. The present study elucidates further differences in human platelet PAR signalling regulation and provides evidence for a cross-talk in which PAR4 signalling counteracts mechanisms involved in PAR1 signalling down-regulation.


Assuntos
Plaquetas/enzimologia , Receptor Cross-Talk/fisiologia , Receptor PAR-1/fisiologia , Receptores de Trombina/fisiologia , Transdução de Sinais/fisiologia , Regulação para Baixo/fisiologia , Humanos , Receptor PAR-1/antagonistas & inibidores , Receptores de Trombina/metabolismo
3.
J Biol Chem ; 283(27): 18493-504, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18480058

RESUMO

Human platelets express protease-activated receptor 1 (PAR1) and PAR4 but limited data indicate for differences in signal transduction. We studied the involvement of PAR1 and PAR4 in the cross-talk between thrombin and epinephrine. The results show that epinephrine acted via alpha(2A)-adrenergic receptors to provoke aggregation, secretion, and Ca(2+) mobilization in aspirin-treated platelets pre-stimulated with subthreshold concentrations of thrombin. Incubating platelets with antibodies against PAR4 or the PAR4-specific inhibitor pepducin P4pal-i1 abolished the aggregation. Furthermore, platelets pre-exposed to the PAR4-activating peptide AYPGKF, but not to the PAR1-activating peptide SFLLRN, were aggregated by epinephrine, whereas both AYPGKF and SFLLRN synergized with epinephrine in the absence of aspirin. The roles of released ATP and ADP were elucidated by using antagonists of the purinergic receptors P2X(1), P2Y(1), and P2Y(12) (i.e. NF449, MRS2159, MRS2179, and cangrelor). Intriguingly, ATP, but not ADP, was required for the epinephrine/thrombin-induced aggregation. In Western blot analysis, a low concentration of AYPGKF, but not SFLLRN, stimulated phosphorylation of Akt on serine 473. Moreover, the phosphatidyl inositide 3-kinase inhibitor LY294002 antagonized the effect of epinephrine combined with thrombin or AYPGKF. Thus, in aspirin-treated platelets, PAR4, but not PAR1, interacts synergistically with alpha(2A)-adrenergic receptors, and the PI3-kinase/Akt pathway is involved in this cross-talk. Furthermore, in PAR4-pretreated platelets, epinephrine caused dense granule secretion, and subsequent signaling from the ATP-gated P2X(1)-receptor and the alpha(2A)-adrenergic receptor induced aggregation. These results suggest a new mechanism that has ATP as a key element and circumvents the action of aspirin on epinephrine-facilitated PAR4-mediated platelet activation.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Aspirina/farmacologia , Plaquetas/metabolismo , Epinefrina/farmacologia , Hemostáticos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores de Trombina/metabolismo , Trombina/farmacologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2 , Antagonistas de Receptores Adrenérgicos alfa 2 , Aspirina/agonistas , Aspirina/antagonistas & inibidores , Plaquetas/citologia , Cálcio/farmacologia , Cromonas/farmacologia , Relação Dose-Resposta a Droga , Antagonismo de Drogas , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Epinefrina/agonistas , Epinefrina/antagonistas & inibidores , Humanos , Morfolinas/farmacologia , Oligopeptídeos/agonistas , Oligopeptídeos/antagonistas & inibidores , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Agregação Plaquetária/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Agonistas Purinérgicos , Agonistas do Receptor Purinérgico P2 , Receptor PAR-1/agonistas , Receptor PAR-1/metabolismo , Receptores Purinérgicos/metabolismo , Receptores Purinérgicos P2X , Receptores de Trombina/agonistas , Vesículas Secretórias/metabolismo , Trombina/agonistas , Trombina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA