Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 821, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699050

RESUMO

BACKGROUND: At sexual maturity, the liver of laying hens undergoes many metabolic changes to support vitellogenesis. In published transcriptomic approaches, hundreds of genes were reported to be overexpressed in laying hens and functional gene annotation using gene ontology tools have essentially revealed an enrichment in lipid and protein metabolisms. We reanalyzed some data from a previously published article comparing 38-week old versus 10-week old hens to give a more integrative view of the functions stimulated in the liver at sexual maturity and to move beyond current physiological knowledge. Functions were defined based on information available in Uniprot database and published literature. RESULTS: Of the 516 genes previously shown to be overexpressed in the liver of laying hens, 475 were intracellular (1.23-50.72 fold changes), while only 36 were predicted to be secreted (1.35-66.93 fold changes) and 5 had no related information on their cellular location. Besides lipogenesis and protein metabolism, we demonstrated that the liver of laying hens overexpresses several clock genes (which supports the circadian control of liver metabolic functions) and was likely to be involved in a liver/brain/liver circuit (neurotransmitter transport), in thyroid and steroid hormones metabolisms. Many genes were associated with anatomical structure development, organ homeostasis but also regulation of blood pressure. As expected, several secreted proteins are incorporated in yolky follicles but we also evidenced that some proteins are likely participating in fertilization (ZP1, MFGE8, LINC00954, OVOCH1) and in thyroid hormone maturation (CPQ). We also proposed that secreted proteins (PHOSPHO1, FGF23, BMP7 but also vitamin-binding proteins) may contribute to the development of peripheral organs including the formation of medullar bones to provide labile calcium for eggshell formation. Thirteen genes are uniquely found in chicken/bird but not in human species, which strengthens that some of these genes may be specifically related to avian reproduction. CONCLUSIONS: This study gives additional hypotheses on some molecular actors and mechanisms that are involved in basic physiological function of the liver at sexual maturity of hen. It also revealed some additional functions that accompany reproductive capacities of laying hens, and that are usually underestimated when using classical gene ontology approaches.


Assuntos
Galinhas/genética , Galinhas/fisiologia , Perfilação da Expressão Gênica , Fígado/metabolismo , Oviposição/genética , Animais , Galinhas/metabolismo , Proteínas do Ovo/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Especificidade da Espécie
2.
J Proteomics ; 209: 103511, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31493547

RESUMO

The Guinea fowl eggshell is a bioceramic material with the remarkable mechanical property of being twice as strong as the chicken eggshell. Both eggshells are composed of 95% calcite and 3.5% organic matrix, which control its structural organization. Chicken eggshell is made of columnar calcite crystals arranged vertically. In the Guinea fowl, the same structure is observed in its inner half, followed by a dramatic change in crystal size and orientation in the outer region. Guinea fowl eggshell is thicker than chicken eggshell. Both structure and shell thickness confer a superior resistance to breakage compared to eggshells of other bird species. To understand the underlying mechanisms controlling the structural organization of this highly resistant material, we used quantitative proteomics to analyze the protein composition of the Guinea fowl eggshell organic matrix at key stages of the biomineralization process. We identified 149 proteins, which were compared to other bird eggshell proteomes and analyzed their potential functions. Among the 149 proteins, 9 are unique to Guinea fowl, some are involved in the control of the calcite precipitation (Lysozyme, Ovocleidin-17-like, Ovocleidin-116 and Ovalbumin), 61 are only found in the zone of microstructure shift and 17 are more abundant in this zone. SIGNIFICANCE: The avian eggshell is a critical physical barrier to protect the contents of this autonomous reproductive enclosure from physical and microbial assault. The Guinea fowl (Numida meleagris) eggshell exhibits a unique microstructure (texture), which confers exceptional mechanical properties compared to eggshells of other species. In order to understand the mechanisms that regulate formation of this texture in the Guinea fowl eggshell, we performed comparative quantitative proteomics at key stages of shell mineralization and particularly during the dramatic shift in shell microstructure. We demonstrate that the Guinea fowl eggshell proteome comprises 149 proteins, of which 61 were specifically associated with the change in size and orientation of calcite crystals. Comparative proteomics analysis with eggshell of other bird species leads to new insights into the biomineralization process. Moreover, our data represents a list of organic compounds as potential additives to regulate material design for industrial fabrication of ceramics. This information also provides molecular markers for efficient genomic selection of chicken strains to lay eggs with improved shell mechanical properties for enhanced food safety.


Assuntos
Casca de Ovo/química , Proteínas/agonistas , Animais , Biomineralização , Carbonato de Cálcio/química , Galinhas , Proteínas do Ovo/análise , Muramidase/análise , Ovalbumina/análise , Proteínas/análise
3.
Nutrients ; 11(3)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909449

RESUMO

Egg is an encapsulated source of macro and micronutrients that meet all requirements to support embryonic development until hatching. The perfect balance and diversity in its nutrients along with its high digestibility and its affordable price has put the egg in the spotlight as a basic food for humans. However, egg still has to face many years of nutritionist recommendations aiming at restricting egg consumption to limit cardiovascular diseases incidence. Most experimental, clinical, and epidemiologic studies concluded that there was no evidence of a correlation between dietary cholesterol brought by eggs and an increase in plasma total-cholesterol. Egg remains a food product of high nutritional quality for adults including elderly people and children and is extensively consumed worldwide. In parallel, there is compelling evidence that egg also contains many and still-unexplored bioactive compounds, which may be of high interest in preventing/curing diseases. This review will give an overview of (1) the main nutritional characteristics of chicken egg, (2) emerging data related to egg bioactive compounds, and (3) some factors affecting egg composition including a comparison of nutritional value between eggs from various domestic species.


Assuntos
Ovos/análise , Valor Nutritivo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Galinhas , Criança , Feminino , Humanos , Masculino
4.
Mol Cell Proteomics ; 18(Suppl 1): S174-S190, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444982

RESUMO

In many amniotes, the amniotic fluid is depicted as a dynamic milieu that participates in the protection of the embryo (cushioning, hydration, and immunity). However, in birds, the protein profile of the amniotic fluid remains unexplored, even though its proteomic signature is predicted to differ compared with that of humans. In fact, unlike humans, chicken amniotic fluid does not collect excretory products and its protein composition strikingly changes at mid-development because of the massive inflow of egg white proteins, which are thereafter swallowed by the embryo to support its growth. Using GeLC-MS/MS and shotgun strategies, we identified 91 nonredundant proteins delineating the chicken amniotic fluid proteome at day 11 of development, before egg white transfer. These proteins were essentially associated with the metabolism of nutrients, immune response and developmental processes. Forty-eight proteins were common to both chicken and human amniotic fluids, including serum albumin, apolipoprotein A1 and alpha-fetoprotein. We further investigated the effective role of chicken amniotic fluid in innate defense and revealed that it exhibits significant antibacterial activity at day 11 of development. This antibacterial potential is drastically enhanced after egg white transfer, presumably due to lysozyme, avian beta-defensin 11, vitelline membrane outer layer protein 1, and beta-microseminoprotein-like as the most likely antibacterial candidates. Interestingly, several proteins recovered in the chicken amniotic fluid prior and after egg white transfer are uniquely found in birds (ovalbumin and related proteins X and Y, avian beta-defensin 11) or oviparous species (vitellogenins 1 and 2, riboflavin-binding protein). This study provides an integrative overview of the chicken amniotic fluid proteome and opens stimulating perspectives in deciphering the role of avian egg-specific proteins in embryonic development, including innate immunity. These proteins may constitute valuable biomarkers for poultry production to detect hazardous situations (stress, infection, etc.), that may negatively affect the development of the chicken embryo.


Assuntos
Líquido Amniótico/metabolismo , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Animais , Antibacterianos/metabolismo , Clara de Ovo , Desenvolvimento Embrionário , Evolução Molecular , Ontologia Genética , Filogenia , Proteoma/metabolismo , Proteômica
5.
Sci Rep ; 6: 27974, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27294500

RESUMO

The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics.


Assuntos
Peptídeos Catiônicos Antimicrobianos/análise , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/farmacologia , Proteínas de Transporte/análise , Proteínas de Transporte/farmacologia , Clara de Ovo/química , Animais , Galinhas , Cromatografia de Afinidade , Listeria monocytogenes/efeitos dos fármacos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Proteômica , Salmonella enterica/efeitos dos fármacos
6.
Poult Sci ; 95(12): 2849-2860, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194731

RESUMO

The aim of this study was to evaluate the capacity of chickens to adapt to and compensate for early dietary restriction of non-phytate P ( NPP: ) and/or Ca (10 to 21 d) in a later phase (22 to 35 d), and to determine whether compensatory processes depend on the P and Ca concentrations in the finisher diet. Four diets were formulated and fed to broilers from 10 to 21 d in order to generate birds with different mineral status: L1 (0.6% Ca, 0.30% NPP), L2 (0.6% Ca, 0.45% NPP), H1 (1.0% Ca, 0.30% NPP), and H2 (1.0% Ca, 0.45% NPP). On d 22, each group was divided into three groups which received a low (L, 0.48% Ca, 0.24% NPP), moderate (M, 0.70% Ca, 0.35% NPP), or high (H, 0.90% Ca, 0.35% NPP) finisher diet until 35 d, resulting in a total of 12 treatments. Lowering the Ca level enhanced apparent ileal digestibility of P (P AID) at 21 d especially with the high NPP level (Ca × NPP, P < 0.01). The lower bone mineralization observed at 21 d in broilers fed the L1 diet compared to those fed the H2 diet had disappeared by 35 d with long-term stimulation of the P AID with the low NPP level (P < 0.001). Although P AID and growth performance were improved in birds fed the L1L compared to the L1H and H2H treatments, tibia characteristics tended to be lower in birds fed the L1L compared to those fed the L1H treatment. Birds fed the H1M treatment had higher P AID, growth performance and tibia ash content than those fed the H1H treatment. A significant increase in the mRNA levels of several genes encoding Ca and P transporters was observed at 35 d in birds fed the L1 followed by the L diet compared to birds fed the L1 followed by the M diet. In conclusion, chickens are able to adapt to early dietary changes in P and Ca through improvement of digestive efficiency in a later phase, and the extent of the compensation in terms of growth performance and bone mineralization depends on the P and Ca levels in the subsequent diet.


Assuntos
Adaptação Fisiológica/fisiologia , Cálcio/deficiência , Galinhas/fisiologia , Dieta/veterinária , Fósforo/deficiência , Animais , Galinhas/metabolismo , Masculino , Reação em Cadeia da Polimerase em Tempo Real
7.
BMC Genomics ; 16: 792, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26470705

RESUMO

BACKGROUND: The avian eggshell membranes surround the egg white and provide a structural foundation for calcification of the eggshell which is essential for avian reproduction; moreover, it is also a natural biomaterial with many potential industrial and biomedical applications. Due to the insoluble and stable nature of the eggshell membrane fibres, their formation and protein constituents remain poorly characterized. The purpose of this study was to identify genes encoding eggshell membrane proteins, particularly those responsible for its structural features, by analyzing the transcriptome of the white isthmus segment of the oviduct, which is the specialized region responsible for the fabrication of the membrane fibres. RESULTS: The Del-Mar 14 K chicken microarray was used to investigate up-regulated expression of transcripts in the white isthmus (WI) compared with the adjacent magnum (Ma) and uterine (Ut) segments of the hen oviduct. Analysis revealed 135 clones hybridizing to over-expressed transcripts (WI/Ma + WI/Ut), and corresponding to 107 NCBI annotated non-redundant Gallus gallus gene IDs. This combined analysis revealed that the structural proteins highly over-expressed in the white isthmus include collagen X (COL10A1), fibrillin-1 (FBN1) and cysteine rich eggshell membrane protein (CREMP). These results validate previous proteomics studies which have identified collagen X (α-1) and CREMP in soluble eggshell extracts. Genes encoding collagen-processing enzymes such as lysyl oxidase homologs 1, 2 and 3 (LOXL1, LOXL2 and LOXL3), prolyl 4 hydroxylase subunit α-2 and beta polypeptide (P4HA2 and P4HB) as well as peptidyl-prolyl cis-trans isomerase C (PPIC) were also over-expressed. Additionally, genes encoding proteins known to regulate disulfide cross-linking, including sulfhydryl oxidase (QSOX1) and thioredoxin (TXN), were identified which suggests that coordinated up-regulation of genes in the white isthmus is associated with eggshell membrane fibre formation. CONCLUSIONS: The present study has identified genes associated with the processing of collagen, other structural proteins, and disulfide-mediated cross-linking during eggshell membrane formation in the white isthmus. Identification of these genes will provide new insight into eggshell membrane structure and mechanisms of formation that will assist in the development of selection strategies to improve eggshell quality and food safety of the table egg.


Assuntos
Galinhas/genética , Proteínas do Ovo/genética , Casca de Ovo/metabolismo , Membranas/metabolismo , Animais , Galinhas/metabolismo , Colágeno/genética , Biologia Computacional , Proteínas do Ovo/biossíntese , Feminino , Fibrilinas , Regulação da Expressão Gênica , Membranas/ultraestrutura , Proteínas dos Microfilamentos/genética
8.
Data Brief ; 4: 430-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26306314

RESUMO

Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed.

9.
Biol Reprod ; 93(3): 71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26157071

RESUMO

The ovalbumin gene family in Gallus gallus is composed of three homologous genes located within a 46 kb locus on chromosome 2: ovalbumin, ovalbumin-related protein Y (OVAY), and ovalbumin-related protein X (OVAX) genes. The expression of these genes in hen oviduct is under estrogen control, but their relative hormonal responsiveness and subsequent protein concentration in egg, is distinctive. Interestingly, all three proteins lack the classical signal peptide for secretion. Ovalbumin, OVAX, and OVAY belong to the serine protease inhibitor (serpin) family whose members share a common tertiary structure. Ovalbumin and OVAX are one of the few members of this family that do not express any protease inhibition activity whereas OVAY has been predicted to be inhibitory, by comparison with the consensus sequence for inhibitory serpins. In contrast to ovalbumin and OVAY, OVAX interacts with heparin, a negatively charged glycosaminoglycan, via a positively charged domain exposed at the surface of the molecule. Ovalbumin is the major egg white protein and might be a source of amino acids for the developing embryo. The physiological function of OVAY is not known, but recent data have revealed a possible role of this protein in early embryonic development. Considering the antibacterial activities of OVAX, this protein might play a role in egg defense. This review sheds light on the expression, biochemistry, and structural specificities of these three highly similar paralogs. It gives new clues in favor of diverging functions, which are likely to have arisen by duplication events from a common ancestral gene.


Assuntos
Proteínas Aviárias/genética , Proteínas Aviárias/fisiologia , Aves/fisiologia , Proteínas do Ovo/genética , Proteínas do Ovo/fisiologia , Ovalbumina/genética , Ovalbumina/fisiologia , Serpinas/genética , Serpinas/fisiologia , Sequência de Aminoácidos , Animais , Evolução Biológica , Galinhas , Humanos , Dados de Sequência Molecular
10.
J Proteomics ; 126: 140-54, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26049031

RESUMO

Eggshell is a bioceramic composed of 95% calcium carbonate mineral and 3.5% organic matrix. Its structural organisation is controlled by its organic matrix. We have used quantitative proteomics to study four key stages of shell mineralisation: 1) widespread deposition of amorphous calcium carbonate (ACC), 2) ACC transformation into crystalline calcite aggregates, 3) formation of larger calcite crystal units and 4) development of a columnar structure with preferential calcite crystal orientation. This approach explored the distribution of 216 shell matrix proteins found at the four stages. Variations in abundance according to these calcification events were observed for 175 proteins. A putative function related to the mineralisation process was predicted by bioinformatics for 77 of them and was further characterised. We confirmed the important role of lysozyme, ovotransferrin, ovocleidin-17 and ovocleidin-116 for shell calcification process, characterised major calcium binding proteins (EDIL3, ALB, MFGE8, NUCB2), and described novel proteoglycans core proteins (GPC4, HAPLN3). We suggest that OVAL and OC-17 play a role in the stabilisation of ACC. Finally, we report proteins involved in the regulation of proteins driving the mineralisation. They correspond to numerous molecular chaperones including CLU, PPIB and OCX21, protease and protease inhibitors including OVM and CST3, and regulators of phosphorylation.


Assuntos
Proteínas Aviárias/metabolismo , Calcificação Fisiológica/fisiologia , Galinhas/metabolismo , Proteínas do Ovo/metabolismo , Proteômica , Animais
11.
J Struct Biol ; 190(3): 291-303, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25934395

RESUMO

Avian eggshell mineralization is the fastest biogenic calcification process known in nature. How this is achieved while producing a highly crystalline material composed of large calcite columnar single crystals remains largely unknown. Here we report that eggshell mineral originates from the accumulation of flat disk-shaped amorphous calcium carbonate (ACC) particles on specific organic sites on the eggshell membrane, which are rich in proteins and sulfated proteoglycans. These structures known as mammillary cores promote the nucleation and stabilization of a amorphous calcium carbonate with calcitic short range order which predetermine the calcite composition of the mature eggshell. The amorphous nature of the precursor phase was confirmed by the diffuse scattering of X-rays and electrons. The nascent calcitic short-range order of this transient mineral phase was revealed by infrared spectroscopy and HRTEM. The ACC mineral deposited around the mammillary core sites progressively transforms directly into calcite crystals without the occurrence of any intermediate phase. Ionic speciation data suggest that the uterine fluid is equilibrated with amorphous calcium carbonate, throughout the duration of eggshell mineralization process, supporting that this mineral phase is constantly forming at the shell mineralization front. On the other hand, the transient amorphous calcium carbonate mineral deposits, as well as the calcite crystals into which they are converted, form by the ordered aggregation of nanoparticles that support the rapid mineralization of the eggshell. The results of this study alter our current understanding of avian eggshell calcification and provide new insights into the genesis and formation of calcium carbonate biominerals in vertebrates.


Assuntos
Calcificação Fisiológica/fisiologia , Carbonato de Cálcio/química , Casca de Ovo/química , Minerais/química , Animais , Galinhas , Elétrons , Nanopartículas/química , Raios X
12.
J Proteomics ; 113: 178-93, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25284052

RESUMO

Gallus gallus eggshell is a bioceramic composed of 95% calcium carbonate in calcitic form and 3.5% extracellular organic matrix. The calcification process occurs in the uterine fluid where biomineralization follows a temporal sequence corresponding to the initiation, growth and termination stages of crystal growth. Eggshell texture and its ultrastructure are regulated by organic matrix proteins, which control mineralization process and influence the eggshell biomechanical properties. We performed proteomic qualitative analyses and identified 308 uterine fluid proteins. Quantitative analysis showed differential abundances at the three stages of shell biomineralization for 64 of them. Cluster analysis revealed a first group of proteins related to mineralization and mainly present at the onset of calcification including OVOT, OVAL, OC-17, and two novel calcium binding proteins (EDIL3, MFGE8). A second group of proteins mainly present at the initiation and termination of shell formation was potentially involved in the regulation of the activity of the uterine fluid proteins (e.g. molecular chaperones, folding proteins, proteases and protease inhibitors). OCX21, a protein highly concentrated in the fluid and the shell, belongs to this group. A third group equally represented at all stages of shell mineralization corresponded to antibacterial proteins that could protect the forming egg against microbial invasion. BIOLOGICAL SIGNIFICANCE: The calcitic avian eggshell protects the developing embryo and, moreover, ensures that the nutritious table egg remains free of pathogens. The eggshell is formed by nucleation upon a fibrous scaffold (the eggshell membranes) followed by an interaction between the growing mineral crystals and the shell organic matrix. This interaction leads to a highly ordered shell microstructure and texture which contribute to its exceptional mechanical properties. Shell mineralization occurs in three distinct phases of calcification (initiation, growth and termination), which are associated with distinct populations of matrix proteins that are secreted into the acellular uterine fluid as modulators of the process. The recent development of high-throughput methods has led to the identification of many proteins in the shell, but little is known concerning their role in shell formation. In order to determine precisely the importance of particular proteins relative to eggshell mineralization, this project used qualitative and quantitative proteomics of the uterine fluid constituents, coupled with bioinformatic analysis, to predict the functional role of proteins secreted at each of the three main stages of shell calcification. Besides its relevance to food production and to hen reproduction, eggshell calcification is furthermore a relevant model for studying calcium carbonate biomineralization on a two-dimensional membrane support. Better understanding of this process will provide insight into the fabrication of ceramics at ambient pressure and temperature.


Assuntos
Proteínas Aviárias/metabolismo , Calcificação Fisiológica/fisiologia , Biologia Computacional , Proteínas do Ovo/metabolismo , Óvulo/metabolismo , Proteômica , Animais , Proteínas Aviárias/genética , Galinhas , Proteínas do Ovo/genética , Feminino
13.
J Agric Food Chem ; 62(12): 2531-40, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24588396

RESUMO

To better appreciate the dynamics of yolk proteins during embryonic development, we analyzed the protein quantitative changes occurring in the yolk plasma at the day of lay and after 12 days of incubation, by comparing unfertilized and fertilized chicken eggs. Of the 127 identified proteins, 69 showed relative abundance differences among conditions. Alpha-fetoprotein and two uncharacterized proteins (F1NHB8 and F1NMM2) were identified for the first time in the egg. After 12 days of incubation, five proteins (vitronectin, α-fetoprotein, similar to thrombin, apolipoprotein B, and apovitellenin-1) showed a major increase in relative abundance, whereas 15 proteins showed a significant decrease in the yolks of fertilized eggs. In unfertilized/table eggs, we observed an accumulation of proteins likely to originate from other egg compartments during incubation. This study provides basic knowledge on the utilization of egg yolk proteins by the embryo and gives some insight into how storage can affect egg quality.


Assuntos
Embrião de Galinha/química , Galinhas/sangue , Proteínas do Ovo/química , Gema de Ovo/química , Proteoma/química , Animais , Embrião de Galinha/irrigação sanguínea , Embrião de Galinha/crescimento & desenvolvimento , Embrião de Galinha/metabolismo , Galinhas/metabolismo , Proteínas do Ovo/metabolismo , Gema de Ovo/metabolismo , Ovos , Proteoma/metabolismo
14.
BMC Genomics ; 15: 220, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24649854

RESUMO

BACKGROUND: The chicken eggshell is a natural mechanical barrier to protect egg components from physical damage and microbial penetration. Its integrity and strength is critical for the development of the embryo or to ensure for consumers a table egg free of pathogens. This study compared global gene expression in laying hen uterus in the presence or absence of shell calcification in order to characterize gene products involved in the supply of minerals and / or the shell biomineralization process. RESULTS: Microarrays were used to identify a repertoire of 302 over-expressed genes during shell calcification. GO terms enrichment was performed to provide a global interpretation of the functions of the over-expressed genes, and revealed that the most over-represented proteins are related to reproductive functions. Our analysis identified 16 gene products encoding proteins involved in mineral supply, and allowed updating of the general model describing uterine ion transporters during eggshell calcification. A list of 57 proteins potentially secreted into the uterine fluid to be active in the mineralization process was also established. They were classified according to their potential functions (biomineralization, proteoglycans, molecular chaperone, antimicrobials and proteases/antiproteases). CONCLUSIONS: Our study provides detailed descriptions of genes and corresponding proteins over-expressed when the shell is mineralizing. Some of these proteins involved in the supply of minerals and influencing the shell fabric to protect the egg contents are potentially useful biological markers for the genetic improvement of eggshell quality.


Assuntos
Galinhas/genética , Casca de Ovo/metabolismo , Perfilação da Expressão Gênica , Minerais/metabolismo , Animais , Calcificação Fisiológica/genética , Biologia Computacional , Feminino , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas/genética , Proteínas/metabolismo , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Útero/embriologia , Útero/metabolismo
15.
J Biol Chem ; 289(10): 7211-7220, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24443564

RESUMO

Gallin is a 41-residue protein, first identified as a minor component of hen egg white and found to be antimicrobial against Escherichia coli. Gallin may participate in the protection of the embryo during its development in the egg. Its sequence is related to antimicrobial ß-defensin peptides. In the present study, gallin was chemically synthesized 1) to further investigate its antimicrobial spectrum and 2) to solve its three-dimensional NMR structure and thus gain insight into structure-function relationships, a prerequisite to understanding its mode(s) of action. Antibacterial assays confirmed that gallin was active against Escherichia coli, but no additional antibacterial activity was observed against the other Gram-positive or Gram-negative bacteria tested. The three-dimensional structure of gallin, which is the first ovodefensin structure to have been solved to date, displays a new five-stranded arrangement. The gallin three-dimensional fold contains the three-stranded antiparallel ß-sheet and the disulfide bridge array typical of vertebrate ß-defensins. Gallin can therefore be unambiguously classified as a ß-defensin. However, an additional short two-stranded ß-sheet reveals that gallin and presumably the other ovodefensins form a new structural subfamily of ß-defensins. Moreover, gallin and the other ovodefensins calculated by homology modeling exhibit atypical hydrophobic surface properties, compared with the already known vertebrate ß-defensins. These specific structural features of gallin might be related to its restricted activity against E. coli and/or to other yet unknown functions. This work provides initial understanding of a critical sequence-structure-function relationship for the ovodefensin family.


Assuntos
Galinhas/metabolismo , beta-Defensinas/química , Sequência de Aminoácidos , Animais , Imageamento Tridimensional , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , beta-Defensinas/síntese química
16.
Data Brief ; 1: 65-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26217689

RESUMO

Chicken eggshell is the protective barrier of the egg. It is a biomineral composed of 95% calcium carbonate on calcitic form and 3.5% organic matrix proteins. Mineralization process occurs in uterus into the uterine fluid. This acellular fluid contains ions and organic matrix proteins precursors which are interacting with the mineral phase and control crystal growth, eggshell structure and mechanical properties. We performed a proteomic approach and identified 308 uterine fluid proteins. Gene Ontology terms enrichments were determined to investigate their potential functions. Mass spectrometry analyses were also combined to label free quantitative analysis to determine the relative abundance of 96 proteins at initiation, rapid growth phase and termination of shell calcification. Sixty four showed differential abundance according to the mineralization stage. Their potential functions have been annotated. The complete proteomic, bioinformatic and functional analyses are reported in Marie et al., J. Proteomics (2015) [1].

17.
BMC Microbiol ; 13: 128, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23758641

RESUMO

BACKGROUND: Egg defence against bacterial contamination relies on immunoglobulins (IgY) concentrated in the yolk and antimicrobial peptides/proteins predominantly localized in the egg white (EW). Hens contaminated with pathogenic microorganisms export specific IgYs to the egg (adaptative immunity). No evidence of such regulation has been reported for the antimicrobial peptides/proteins (innate immunity) which are preventively secreted by the hen oviduct and are active against a large range of microbes. We investigated whether the egg innate defences can be stimulated by the environmental microbial contamination by comparing the antimicrobial activity of EW of hens raised in three extreme breeding conditions: Germ-free (GF), Specific Pathogen Free (SPF) and Conventional (C) hens. RESULTS: The difference in the immunological status of GF, SPF and C hens was confirmed by the high stimulation of IL-1ß, IL-8 and TLR4 genes in the intestine of C and SPF groups. EW from C and SPF groups demonstrated higher inhibitory effect against Staphylococcus aureus (13 to 18%) and against Streptococcus uberis (31 to 35%) as compared to GF but showed similar activity against Salmonella Enteritidis, Salmonella Gallinarum, Escherichia coli and Listeria monocytogenes. To further investigate these results, we explored putative changes amongst the three main mechanisms of egg antimicrobial defence: the sequestration of bacterial nutrients, the inactivation of exogenous proteases and the direct lytic action on microorganisms. Lysozyme activity, chymotrypsin-, trypsin- and papain-inhibiting potential of EW and the expression of numerous antimicrobial genes were not stimulated suggesting that these are not responsible for the change in anti-S. aureus and anti-S. uberis activity. Moreover, whereas the expression levels of IL-1ß, IL-8 and TLR4 genes were modified by the breeding conditions in the intestine of C and SPF groups they were not modified in the magnum where egg white is formed. CONCLUSIONS: Altogether, these data revealed that the degree of environmental microbial exposure of the hen moderately stimulated the egg innate defence, by reinforcing some specific antimicrobial activities to protect the embryo and to insure hygienic quality of table eggs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Bactérias/imunologia , Clara de Ovo/química , Imunidade Inata , Exposição Materna , Animais , Peptídeos Catiônicos Antimicrobianos/análise , Galinhas , Feminino
18.
J Biol Chem ; 288(24): 17285-95, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23615912

RESUMO

Ovalbumin family contains three proteins with high sequence similarity: ovalbumin, ovalbumin-related protein Y (OVAY), and ovalbumin-related protein X (OVAX). Ovalbumin is the major egg white protein with still undefined function, whereas the biological activity of OVAX and OVAY has not yet been explored. Similar to ovalbumin and OVAY, OVAX belongs to the ovalbumin serine protease inhibitor family (ov-serpin). We show that OVAX is specifically expressed by the magnum tissue, which is responsible for egg white formation. OVAX is also the main heparin-binding protein of egg white. This glycoprotein with a predicted reactive site at Lys(367)-His(368) is not able to inhibit trypsin, plasmin, or cathepsin G with or without heparin as a cofactor. Secondary structure of OVAX is similar to that of ovalbumin, but the three-dimensional model of OVAX reveals the presence of a cluster of exposed positive charges, which potentially explains the affinity of this ov-serpin for heparin, as opposed to ovalbumin. Interestingly, OVAX, unlike ovalbumin, displays antibacterial activities against both Listeria monocytogenes and Salmonella enterica sv. Enteritidis. These properties partly involve heparin-binding site(s) of the molecule as the presence of heparin reverses its anti-Salmonella but not its anti-Listeria potential. Altogether, these results suggest that OVAX and ovalbumin, although highly similar in sequence, have peculiar sequential and/or structural features that are likely to impact their respective biological functions.


Assuntos
Antibacterianos/metabolismo , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Serpinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Proteínas Aviárias/genética , Proteínas Aviárias/isolamento & purificação , Proteínas Aviárias/farmacologia , Sequência de Bases , Catepsina G/antagonistas & inibidores , Cromatografia de Afinidade , Fibrinolisina/antagonistas & inibidores , Glicosilação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Heparina/química , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Especificidade de Órgãos , Ovalbumina/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico , Serpinas/genética , Serpinas/isolamento & purificação , Serpinas/farmacologia , Homologia Estrutural de Proteína , Inibidores da Tripsina/genética , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/metabolismo , Inibidores da Tripsina/farmacologia
19.
Vet Immunol Immunopathol ; 152(3-4): 225-36, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23351641

RESUMO

The natural protective system of eggs relies on egg yolk immunoglobulins and on antimicrobial proteins/peptides mainly concentrated in the egg white. There is much evidence concerning the specific stimulation of immunoglobulins by antigens but to date, the influence of the hen milieu on the regulation of the egg innate molecular immunity has not been established. To explore the hypothesis of modulation in egg antimicrobial molecules, laying hens were immune-challenged with intravenous injections of Salmonella enterica Enteritidis lipopolysaccharide (LPS) at 24 h intervals. Eggs of the control and LPS groups were collected over a period of 21 days following the first LPS injection and the egg white activities against Staphylococcus aureus and Escherichia coli were assessed. The increase in egg white anti-S. aureus activity reached 20.9% and 23.4% (p<0.05) respectively on days 5 and 6 after the first LPS injection. Anti-E. coli activity increased moderately only on days 9 and 15 after the LPS treatment. To explore the origin of these increased antimicrobial activities, we analyzed the lysozyme and proteases inhibiting (anti-trypsin and anti-chymotrypsin) activities and the pH variations of egg whites. We recorded no significant variations between the two experimental groups for these potential modulating factors. Finally, using RT-qPCR we studied the expression of several genes coding for antimicrobial proteins and peptides involved in the immune response in the infundibulum and the magnum, Out of the 11 genes, only TLR4 in the magnum and ovocalyxin-36 in infundibulum were over-expressed respectively 24h and 8 days after the first LPS injection. The other candidate genes showed similar or down regulated expression in the LPS group as compared to the control especially during the first 24h. Our results suggest that the hen enhances the albumen antimicrobial activity of its eggs when exposed to immune stimulations or infections. This could be an attempt to preventively reinforce the protection of the embryo with nonspecific antimicrobial agents in addition to the specific antibodies exported to the egg. The origin of this stimulation of egg molecular immunity remains to be characterized amongst the numerous novel egg proteins recently identified.


Assuntos
Galinhas/imunologia , Galinhas/microbiologia , Lipopolissacarídeos/administração & dosagem , Óvulo/imunologia , Óvulo/microbiologia , Staphylococcus aureus/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas Aviárias/genética , Proteínas Aviárias/imunologia , Embrião de Galinha , Galinhas/genética , Proteínas do Ovo/genética , Proteínas do Ovo/imunologia , Clara de Ovo/microbiologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Feminino , Expressão Gênica , Imunidade Inata/genética , Lipopolissacarídeos/imunologia , Muramidase/imunologia , Oviductos/imunologia , Óvulo/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade
20.
BMC Genomics ; 13: 457, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22950364

RESUMO

BACKGROUND: Most egg yolk precursors are synthesized by the liver, secreted into the blood and transferred into oocytes, to provide nutrients and bioactive molecules for the avian embryo. Three hundred and sixteen distinct proteins have been identified in egg yolk. These include 37 proteases and antiproteases, which are likely to play a role in the formation of the yolk (vitellogenesis), as regulators of protein metabolism. We used a transcriptomic approach to define the protease and antiprotease genes specifically expressed in the hen liver in relation to vitellogenesis by comparing sexually mature and pre-laying chickens showing different steroid milieu. RESULTS: Using a 20 K chicken oligoarray, a total of 582 genes were shown to be over-expressed in the liver of sexually mature hens (1.2 to 67 fold-differences). Eight of the top ten over-expressed genes are known components of the egg yolk or perivitelline membrane. This list of 582 genes contains 12 proteases and 3 antiproteases. We found that "uncharacterized protein LOC419301/similar to porin" (GeneID:419301), an antiprotease and "cathepsin E-A-like/similar to nothepsin" (GeneID:417848), a protease, were the only over-expressed candidates (21-fold and 35-fold difference, respectively) that are present in the egg yolk. Additionally, we showed the 4-fold over-expression of "ovochymase-2/similar to oviductin" (GeneID:769290), a vitelline membrane-specific protease. CONCLUSIONS: Our approach revealed that three proteases and antiproteases are likely to participate in the formation of the yolk. The role of the other 12 proteases and antiproteases which are over-expressed in our model remains unclear. At least 1/3 of proteases and antiproteases identified in egg yolk and vitelline membrane proteomes are expressed similarly in the liver regardless of the maturity of hens, and have been initially identified as regulators of haemostasis and inflammatory events. The lack of effect of sex steroids on these genes expressed in the liver but the products of which are found in the yolk suggests that these may be passively incorporated into the yolk rather than actively produced for that purpose. These results raise the question of the biological significance of egg yolk proteases and antiproteases, and more generally of all minor proteins that have been identified in egg yolk.


Assuntos
Galinhas/genética , Fígado/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Vitelogênese , Animais , Galinhas/metabolismo , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Gema de Ovo/enzimologia , Feminino , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeo Hidrolases/genética , Transcriptoma , Membrana Vitelina/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...