Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 444(1-2): 343-54, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23896639

RESUMO

The hepatitis C virus NS5A protein is an established and clinically validated target for antiviral intervention by small molecules. Characterizations are presented of compounds identified as potent inhibitors of HCV replication to provide insight into structural elements that interact with the NS5A protein. UV-activated cross linking and affinity isolation was performed with one series to probe the physical interaction between the inhibitors and the NS5A protein expressed in HCV replicon cells. Resistance mapping with the second series was used to determine the functional impact of specific inhibitor subdomains on the interaction with NS5A. The data provide evidence for a direct high-affinity interaction between these inhibitors and the NS5A protein, with the interaction dependent on inhibitor stereochemistry. The functional data supports a model of inhibition that implicates inhibitor binding by covalently combining distinct pharmacophores across an NS5A dimer interface to achieve maximal inhibition of HCV replication.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Farmacorresistência Viral , Humanos , Ligação Proteica
2.
Hepatology ; 55(6): 1692-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22234905

RESUMO

UNLABELLED: The influence of naturally occurring polymorphisms on the potency of the HCV nonstructural protein 5A (NS5A) replication complex inhibitor, BMS-790052, was investigated by evaluating hybrid replicons in which the entire NS5A coding region of genotype (GT) la and 1b laboratory (lab) strains (H77c and Con1) were replaced with the corresponding regions of specimens collected from 10 GT-1a- and 6 GT-1b-infected subjects. For baseline (BL) specimens, with no previously observed resistance variants identified by population sequencing, the median 50% effective concentration (EC(50) ) values for BMS-790052 were similar for the clinically derived and lab strains. A Q30R variant was observed at viral breakthrough (VBT) in one of the GT-1a-infected subjects. Because the lowest plasma exposure of BMS-790052 observed in this subject was 117 nM and the median 50% effective concentration value for a GT-1a H77c replicon containing a Q30R substitution is ~7 nM, a rigorous investigation was initiated to determine the basis for resistance. Three approaches were used: (1) replacement of the entire H77c NS5A or (2) replacement of the N-terminal region of NS5A, with sequence from BL and day 14, and (3) substitution of specific amino acids. A BL polymorphism (E62D) did not contribute resistance to BMS-790052; however, the linked variant, Q30R-E62D, conferred high-level resistance in vitro and is likely responsible for VBT in vivo. CONCLUSION: Our data show that a BL polymorphism with minimal effect on the anti-HCV effect of BMS-790052 can affect the emergence of resistance and significantly affect clinical outcome. This work establishes a clear, systematic approach to monitor resistance to NS5A inhibitors in the clinic.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Imidazóis/farmacologia , Polimorfismo Genético , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Carbamatos , Linhagem Celular , Genótipo , Humanos , Pirrolidinas , RNA Viral/biossíntese , Valina/análogos & derivados
3.
Intervirology ; 48(2-3): 183-91, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15812193

RESUMO

OBJECTIVE: To utilize chimeric hepatitis C virus (HCV) replicons to select adaptive mutation(s) that allow replication of a genotype 1a replicon. METHODS: We used a genetic approach to gradually apply selective pressure by generating chimeric replicons through sequential replacement of nonstructural genes of a 1b replicon with genotype 1a sequences. RESULTS: A chimeric replicon containing a genotype 1a NS5A protein did not replicate in a transient assay, but could be used to establish stable cell lines using G418 selection. The cell lines contained a K1846T mutation in NS4B which functioned as an adaptive mutation that now allowed the chimera to replicate at levels similar to wild-type replicons. Similarly, replication of a 1a NS5A5B chimera was only observed after establishment of stable cell lines, even in the presence of the K1846T mutation. Sequence analysis of this cell line revealed an additional adaptive mutation of M1496L in NS3. Lastly, by including the K1846T mutation in a replicon that was entirely genotype 1a sequence, stable 1a cell lines could be established. CONCLUSION: These studies identify an NS4B adaptive mutation, K1846T, which allows establishment of a replication-competent 1a replicon and demonstrate the utility of this chimeric approach for establishing replicons for various HCV genotypes.


Assuntos
Genoma Viral , Hepacivirus/genética , Hepacivirus/fisiologia , Replicon , Replicação Viral , Substituição de Aminoácidos , Genes Virais , Genótipo , Mutação , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...