Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Haemophilia ; 30(3): 743-751, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507035

RESUMO

INTRODUCTION: The physical pain and disability affecting many people with haemophilia A (PwHA) are known detractors from psychological wellbeing. While psychosocial support is considered a core tenet of the haemophilia comprehensive care structure, the extent to which mental health challenges are detected and monitored by the individuals treating haematologist remains relatively unexplored. AIM: To describe prevalence of anxiety and depression in a real-world cohort of adult PwHA and evaluate the congruence in reporting of anxiety or depression (A/D) between PwHA and their treating physicians. METHODS: Data for PwHA without inhibitors was drawn from the European 'Cost of Haemophilia: A Socioeconomic Survey II' (CHESS II) study. Haematologist-indicated comorbidities of anxiety and depression were unified into a single A/D indicator. The EQ-5D-5L health status measure was used to characterise self-reported A/D, with individuals stratified into two non-mutually exclusive subgroups based on level of A/D reported (Subgroup A: 'some' or above; Subgroup B: 'moderate' or above). RESULT: Of 381 PwHA with evaluable EQ-5D-5L responses, 54% (n = 206) self-reported at least some A/D (Subgroup A) and 17% (n = 66) reported at least moderate A/D (Subgroup B). Patient-physician congruence in A/D reporting was 53% and 76% for Subgroups A and B, respectively. Descriptive analysis suggested that individuals with physician- and/or self-reported A/D experienced worse clinical outcomes (bleeding events, joint disease, chronic pain). CONCLUSION: While adverse clinical outcomes appear to correlate with A/D, self-reports of moderate-severe symptoms occasionally lacked formal recognition from treating physicians. Cross-disciplinary surveillance of mental health issues could improve both psychological and clinical outcomes among PwHA.


Assuntos
Ansiedade , Depressão , Hemofilia A , Humanos , Hemofilia A/complicações , Hemofilia A/psicologia , Depressão/epidemiologia , Depressão/etiologia , Depressão/psicologia , Ansiedade/psicologia , Ansiedade/epidemiologia , Adulto , Masculino , Europa (Continente) , Pessoa de Meia-Idade , Feminino , Médicos/psicologia , Adulto Jovem , Qualidade de Vida
2.
Heliyon ; 10(1): e23244, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163095

RESUMO

Therapy-related acute myeloid leukaemia (t-AML) is a late side effect of previous chemotherapy (ct-AML) and/or radiotherapy (rt-AML) or immunosuppressive treatment. t-AMLs, which account for ∼10-20 % of all AML cases, are extremely aggressive and have a poor prognosis compared to de novo AML. Our hypothesis is that exposure to radiation causes genome-wide epigenetic changes in rt-AML. An epigenome-wide association study was undertaken, measuring over 850K methylation sites across the genome from fifteen donors (five healthy, five de novo, and five t-AMLs). The study predominantly focussed on 94K sites that lie in CpG-rich gene promoter regions. Genome-wide hypomethylation was discovered in AML, primarily in intergenic regions. Additionally, genes specific to AML were identified with promoter hypermethylation. A two-step validation was conducted, both internally, using pyrosequencing to measure methylation levels in specific regions across fifteen primary samples, and externally, with an additional eight AML samples. We demonstrated that the MEST and GATA5 gene promoters, which were previously identified as tumour suppressors, were noticeably hypermethylated in rt-AML, as opposed to other subtypes of AML and control samples. These may indicate the epigenetic involvement in the development of rt-AML at the molecular level and could serve as potential targets for drug therapy in rt-AML.

3.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256152

RESUMO

Cancer and ionizing radiation exposure are associated with inflammation. To identify a set of radiation-specific signatures of inflammation-associated genes in the blood of partially exposed radiotherapy patients, differential expression of 249 inflammatory genes was analyzed in blood samples from cancer patients and healthy individuals. The gene expression analysis on a cohort of 63 cancer patients (endometrial, head and neck, and prostate cancer) before and during radiotherapy (24 h, 48 h, ~1 week, ~4-8 weeks, and 1 month after the last fraction) identified 31 genes and 15 up- and 16 down-regulated genes. Transcription variability under normal conditions was determined using blood drawn on three separate occasions from four healthy donors. No difference in inflammatory expression between healthy donors and cancer patients could be detected prior to radiotherapy. Remarkably, repeated sampling of healthy donors revealed an individual endogenous inflammatory signature. Next, the potential confounding effect of concomitant inflammation was studied in the blood of seven healthy donors taken before and 24 h after a flu vaccine or ex vivo LPS (lipopolysaccharide) treatment; flu vaccination was not detected at the transcriptional level and LPS did not have any effect on the radiation-induced signature identified. Finally, we identified a radiation-specific signature of 31 genes in the blood of radiotherapy patients that were common for all cancers, regardless of the immune status of patients. Confirmation via MQRT-PCR was obtained for BCL6, MYD88, MYC, IL7, CCR4 and CCR7. This study offers the foundation for future research on biomarkers of radiation exposure, radiation sensitivity, and radiation toxicity for personalized radiotherapy treatment.


Assuntos
Neoplasias da Próstata , Exposição à Radiação , Radioterapia (Especialidade) , Masculino , Humanos , Lipopolissacarídeos , Inflamação/genética
4.
iScience ; 26(9): 107530, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664628

RESUMO

Ionizing radiation (IR) is a risk factor for acute myeloid leukemia (rAML). Murine rAMLs feature both hemizygous chromosome 2 deletions (Del2) and point mutations (R235) within the hematopoietic regulatory gene Spi1. We generated a heterozygous CBA Spi1 R235 mouse (CBASpm/+) which develops de novo AML with 100% incidence by ∼12 months old and shows a dose-dependent reduction in latency following X-irradiation. These effects are reduced on an AML-resistant C57Bl6 genetic background. CBASpm/Gfp reporter mice show increased Gfp expression, indicating compensation for Spm-induced Spi1 haploinsufficiency. Del2 is always detected in both de novo and rAMLs, indicating that biallelic Spi1 mutation is required for AML. CBASpm/+ mice show that a single Spm modification is sufficient for initiating AML development with complete penetrance, via the "two-hit" mechanism and this is accelerated by IR exposure. Similar SPI1/PU.1 polymorphisms in humans could potentially lead to enhanced susceptibility to IR following medical or environmental exposure.

5.
Adv Radiat Oncol ; 8(4): 101215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152486

RESUMO

Purpose: The ongoing SARS-CoV-2 pandemic has resulted in over 6.3 million deaths and 560 million COVID-19 cases worldwide. Clinical management of hospitalized patients is complex due to the heterogeneous course of COVID-19. Low-dose radiation therapy is known to dampen localized chronic inflammation and has been suggested to be used to reduce lung inflammation in patients with COVID-19. However, it is unknown whether SARS-CoV-2 alters the radiation response and associated radiation exposure related risk. Methods and Materials: We generated gene expression profiles from circulating leukocytes of hospitalized patients with COVID-19 and healthy donors. Results: The p53 signaling pathway was found to be dysregulated, with mRNA levels of p53, ATM, and CHK2 being lower in patients with COVID-19. Several key p53 target genes involved in cell cycle arrest, apoptosis, and p53 feedback inhibition were upregulated in patients with COVID-19 while other p53 target genes were downregulated. This dysregulation has functional consequences as the transcription of p53-dependant genes (CCNG1, GADD45A, DDB2, SESN1, FDXR, APOBEC) was reduced 24 hours after x-ray exposure ex vivo to both low (100 mGy) or high (2 Gy) doses. Conclusions: SARS-CoV-2 infection affects a DNA damage response that may modify radiation-induced health risks in exposed patients with COVID-19.

6.
Cancers (Basel) ; 14(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35681629

RESUMO

External beam radiation therapy leads to cellular activation of the DNA damage response (DDR). DNA double-strand breaks (DSBs) activate the ATM/CHEK2/p53 pathway, inducing the transcription of stress genes. The dynamic nature of this transcriptional response has not been directly observed in vivo in humans. In this study we monitored the messenger RNA transcript abundances of nine DNA damage-responsive genes (CDKN1A, GADD45, CCNG1, FDXR, DDB2, MDM2, PHPT1, SESN1, and PUMA), eight of them regulated by p53 in circulating blood leukocytes at different time points (2, 6-8, 16-18, and 24 h) in cancer patients (lung, neck, brain, and pelvis) undergoing radiotherapy. We discovered that, although the calculated mean physical dose to the blood was very low (0.038-0.169 Gy), an upregulation of Ferredoxin reductase (FDXR) gene transcription was detectable 2 h after exposure and was dose dependent from the lowest irradiated percentage of the body (3.5% whole brain) to the highest, (up to 19.4%, pelvic zone) reaching a peak at 6-8 h. The radiation response of the other genes was not strong enough after such low doses to provide meaningful information. Following multiple fractions, the expression level increased further and was still significantly up-regulated by the end of the treatment. Moreover, we compared FDXR transcriptional responses to ionizing radiation (IR) in vivo with healthy donors' blood cells exposed ex vivo and found a good correlation in the kinetics of expression from the 8-hours time-point onward, suggesting that a molecular transcriptional regulation mechanism yet to be identified is involved. To conclude, we provided the first in vivo human report of IR-induced gene transcription temporal response of a panel of p53-dependant genes. FDXR was demonstrated to be the most responsive gene, able to reliably inform on the low doses following partial body irradiation of the patients, and providing an expression pattern corresponding to the % of body exposed. An extended study would provide individual biological dosimetry information and may reveal inter-individual variability to predict radiotherapy-associated adverse health outcomes.

7.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638945

RESUMO

The quest for the discovery and validation of radiosensitivity biomarkers is ongoing and while conventional bioassays are well established as biomarkers, molecular advances have unveiled new emerging biomarkers. Herein, we present the validation of a new 4-gene signature panel of CDKN1, FDXR, SESN1 and PCNA previously reported to be radiation-responsive genes, using the conventional G2 chromosomal radiosensitivity assay. Radiation-induced G2 chromosomal radiosensitivity at 0.05 Gy and 0.5 Gy IR is presented for a healthy control (n = 45) and a prostate cancer (n = 14) donor cohort. For the prostate cancer cohort, data from two sampling time points (baseline and Androgen Deprivation Therapy (ADT)) is provided, and a significant difference (p > 0.001) between 0.05 Gy and 0.5 Gy was evident for all donor cohorts. Selected donor samples from each cohort also exposed to 0.05 Gy and 0.5 Gy IR were analysed for relative gene expression of the 4-gene signature. In the healthy donor cohort, there was a significant difference in gene expression between IR dose for CDKN1, FXDR and SESN1 but not PCNA and no significant difference found between all prostate cancer donors, unless they were classified as radiation-induced G2 chromosomal radiosensitive. Interestingly, ADT had an effect on radiation response for some donors highlighting intra-individual heterogeneity of prostate cancer donors.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Choque Térmico/genética , Proteínas Mitocondriais/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Antígeno Nuclear de Célula em Proliferação/genética , Neoplasias da Próstata/genética , Tolerância a Radiação/genética , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Estudos de Casos e Controles , Cromossomos/efeitos da radiação , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex/métodos , Prognóstico , Neoplasias da Próstata/sangue , Neoplasias da Próstata/tratamento farmacológico , Doses de Radiação , Tolerância a Radiação/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adulto Jovem
8.
Radiat Oncol ; 16(1): 83, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941218

RESUMO

BACKGROUND: This communication reports the identification of a new panel of transcriptional changes in inflammation-associated genes observed in response to ionising radiation received by radiotherapy patients. METHODS: Peripheral blood samples were taken with ethical approval and informed consent from a total of 20 patients undergoing external beam radiotherapy for breast, lung, gastrointestinal or genitourinary tumours. Nanostring nCounter analysis of transcriptional changes was carried out in samples prior and 24 h post-delivery of the 1st radiotherapy fraction, just prior to the 5th or 6th fraction, and just before the last fraction. RESULTS: Statistical analysis with BRB-ArrayTools, GLM MANOVA and nSolver, revealed a radiation responsive panel of genes which varied by patient group (type of cancer) and with time since exposure (as an analogue for dose received), which may be useful as a biomarker of radiation response. CONCLUSION: Further validation in a wider group of patients is ongoing, together with work towards a full understanding of patient specific responses in support of personalised approaches to radiation medicine.


Assuntos
Biomarcadores Tumorais/sangue , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Inflamação/genética , Neoplasias/sangue , Radiação Ionizante , Transcriptoma/efeitos da radiação , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/radioterapia , Feminino , Neoplasias Gastrointestinais/sangue , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/imunologia , Neoplasias Gastrointestinais/radioterapia , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/radioterapia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/radioterapia , Projetos Piloto , Prognóstico , Neoplasias Urogenitais/sangue , Neoplasias Urogenitais/genética , Neoplasias Urogenitais/imunologia , Neoplasias Urogenitais/radioterapia
9.
Int J Radiat Biol ; 97(5): 675-686, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33826469

RESUMO

PURPOSE: For triage purposes following a nuclear accident or a terrorist event, gene expression biomarkers in blood have been demonstrated to be good bioindicators of ionizing radiation (IR) exposure and can be used to assess the dose received by exposed individuals. Many IR-sensitive genes are regulated by the DNA damage response pathway, and modulators of this pathway could potentially affect their expression level and therefore alter accurate dose estimations. In the present study, we addressed the potential influence of temperature, sample transport conditions and the blood cell fraction analyzed on the transcriptional response of the following radiation-responsive genes: FDXR, CCNG1, MDM2, PHPT1, APOBEC3H, DDB2, SESN1, P21, PUMA, and GADD45. MATERIALS AND METHODS: Whole blood from healthy donors was exposed to a 2 Gy X-ray dose with a dose rate of 0.5 Gy/min (output 13 mA, 250 kV peak, 0.2 mA) and incubated for 24 h at either 37, 22, or 4 °C. For mimicking the effect of transport conditions at different temperatures, samples incubated at 37 °C for 24 h were kept at 37, 22 or 4 °C for another 24 h. Comparisons of biomarker responses to IR between white blood cells (WBCs), peripheral blood mononuclear cells (PBMCs) and whole blood were carried out after a 2 Gy X-ray exposure and incubation at 37 °C for 24 hours. RESULTS: Hypothermic conditions (22 or 4 °C) following irradiation drastically inhibited transcriptional responses to IR exposure. However, sample shipment at different temperatures did not affect gene expression level except for SESN1. The transcriptional response to IR of specific genes depended on the cell fraction used, apart from FDXR, CCNG1, and SESN1. CONCLUSION: In conclusion, temperature during the incubation period and cell fraction but not the storing conditions during transport can influence the transcriptional response of specific genes. However, FDXR and CCNG1 showed a consistent response under all the different conditions tested demonstrating their reliability as individual biological dosimetry biomarkers.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Radiometria/métodos , Temperatura , Adulto , Relação Dose-Resposta à Radiação , Humanos , Masculino
10.
Leuk Lymphoma ; 62(2): 454-461, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33161783

RESUMO

Acute myeloid leukemia (AML) is an aggressive cancer that progresses rapidly with a poor prognosis. Cytogenetic analysis provides the most accurate determination of diagnosis and prognosis however, about 42-48% of AML patients have a cytogenetically normal karyotype. Genetic analysis can provide further information and the identification of new mutations could result in improved risk stratification, prognosis and better understanding of the mechanisms of AML leukaemogenesis. In this study, we analyzed genetic alterations in 16 human AML cases by Haloplex sequencing with confirmation of two previously unreported mutations in the genes DNMT3A and RUNX1 by Sanger sequencing or pyrosequencing. The two novel mutations consist of two frameshift mutations identified in two different AML patients and reported as deleterious by bioinformatic analysis. These mutations confirm the exclusion and co-occurrence of specific gene mutation patterns in AML and may provide further information for patient diagnosis and prognosis.


Assuntos
Leucemia Mieloide Aguda , Análise Citogenética , Humanos , Cariótipo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação , Prognóstico
11.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113898

RESUMO

Following cell stress such as ionising radiation (IR) exposure, multiple cellular pathways are activated. We recently demonstrated that ferredoxin reductase (FDXR) has a remarkable IR-induced transcriptional responsiveness in blood. Here, we provided a first comprehensive FDXR variant profile following DNA damage. First, specific quantitative real-time polymerase chain reaction (qPCR) primers were designed to establish dose-responses for eight curated FDXR variants, all up-regulated after IR in a dose-dependent manner. The potential role of gender on the expression of these variants was tested, and neither the variants response to IR nor the background level of expression was profoundly affected; moreover, in vitro induction of inflammation temporarily counteracted IR response early after exposure. Importantly, transcriptional up-regulation of these variants was further confirmed in vivo in blood of radiotherapy patients. Full-length nanopore sequencing was performed to identify other FDXR variants and revealed the high responsiveness of FDXR-201 and FDXR-208. Moreover, FDXR-218 and FDXR-219 showed no detectable endogenous expression, but a clear detection after IR. Overall, we characterised 14 FDXR transcript variants and identified for the first time their response to DNA damage in vivo. Future studies are required to unravel the function of these splicing variants, but they already represent a new class of radiation exposure biomarkers.


Assuntos
Sangue/efeitos da radiação , Neoplasias/genética , Oxirredutases/genética , Regulação para Cima , Adulto , Processamento Alternativo , Dano ao DNA , Relação Dose-Resposta à Radiação , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/radioterapia , Radiação Ionizante
12.
Radiat Res ; 193(2): 143-154, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31829904

RESUMO

In the event of a large-scale event leading to acute ionizing radiation exposure, high-throughput methods would be required to assess individual dose estimates for triage purposes. Blood-based gene expression is a broad source of biomarkers of radiation exposure which have great potential for providing rapid dose estimates for a large population. Time is a crucial component in radiological emergencies and the shipment of blood samples to relevant laboratories presents a concern. In this study, we performed nanopore sequencing analysis to determine if the technology can be used to detect radiation-inducible genes in human peripheral blood mononuclear cells (PBMCs). The technology offers not only long-read sequencing but also a portable device which can overcome issues involving sample shipment, and provide faster results. For this goal, blood from nine healthy volunteers was 2 Gy ex vivo X irradiated. After PBMC isolation, irradiated samples were incubated along with the controls for 24 h at 37°C. RNA was extracted, poly(A)+ enriched and reverse-transcribed before sequencing. The data generated was analyzed using a Snakemake pipeline modified to handle paired samples. The sequencing analysis identified a radiation signature consisting of 46 differentially expressed genes (DEGs) which included 41 protein-coding genes, a long non-coding RNA and four pseudogenes, five of which have been identified as radiation-responsive transcripts for the first time. The genes in which transcriptional expression is most significantly modified after radiation exposure were APOBEC3H and FDXR, presenting a 25- and 28-fold change on average, respectively. These levels of transcriptional response were comparable to results we obtained by quantitative polymerase chain reaction (qPCR) analysis. In vivo exposure analyses showed a transcriptional radioresponse at 24 h postirradiation for both genes together with a strong dose-dependent response in blood irradiated ex vivo. Finally, extrapolating from the data we obtained, the minimum sequencing time required to detect an irradiated sample using APOBEC3H transcripts would be less than 3 min for a total of 50,000 reads. Future improvements, in sample processing and bioinformatic pipeline for specific radiation-responsive transcript identification, will allow the provision of a portable, rapid, real-time biodosimetry platform based on this new sequencing technology. In summary, our data show that nanopore sequencing can identify radiation-responsive genes and can also be used for identification of new transcripts.


Assuntos
Sangue/metabolismo , Sangue/efeitos da radiação , Sequenciamento por Nanoporos , Exposição à Radiação/efeitos adversos , Transcrição Gênica/efeitos da radiação , Transcriptoma/efeitos da radiação , Relação Dose-Resposta à Radiação , Genômica , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação
13.
Carcinogenesis ; 41(8): 1104-1112, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31646336

RESUMO

Therapy-related and more specifically radiotherapy-associated acute myeloid leukaemia (AML) is a well-recognized potential complication of cytotoxic therapy for the treatment of a primary cancer. The CBA mouse model is used to study radiation leukaemogenesis mechanisms with Sfpi1/PU.1 deletion and point mutation already identified as driving events during AML development. To identify new pathways, we analysed 123 mouse radiation-induced AML (rAML) samples for the presence of mutations identified previously in human AML and found three genes to be mutated; Sfpi1 R235 (68%), Flt3-ITD (4%) and Kras G12 (3%), of which G12R was previously unreported. Importantly, a significant decrease in Sfpi1 gene expression is found almost exclusively in rAML samples without an Sfpi1 R235 mutation and is specifically associated with up-regulation of mir-1983 and mir-582-5p. Moreover, this down-regulation of Sfpi1 mRNA is negatively correlated with DNA methylation levels at specific CpG sites upstream of the Sfpi1 transcriptional start site. The down regulation of Sfpi1/PU.1 has also been reported in human AML cases revealing one common pathway of myeloid disruption between mouse and human AML where dysregulation of Sfpi1/PU.1 is a necessary step in AML development.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Experimental/genética , Leucemia Mieloide Aguda/genética , Leucemia Induzida por Radiação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Animais , Carcinogênese , Metilação de DNA/genética , Regulação para Baixo , Humanos , Camundongos , Camundongos Endogâmicos CBA , MicroRNAs/genética , Mutação , Regiões Promotoras Genéticas , Tirosina Quinase 3 Semelhante a fms
14.
Funct Integr Genomics ; 19(4): 575-585, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30706161

RESUMO

Individual variability in response to radiation exposure is recognised and has often been reported as important in treatment planning. Despite many efforts to identify biomarkers allowing the identification of radiation sensitive patients, it is not yet possible to distinguish them with certainty before the beginning of the radiotherapy treatment. A comprehensive analysis of genome-wide single-nucleotide polymorphisms (SNPs) and a transcriptional response to ionising radiation exposure in twins have the potential to identify such an individual. In the present work, we investigated SNP profile and CDKN1A gene expression in blood T lymphocytes from 130 healthy Caucasians with a complex level of individual kinship (unrelated, mono- or dizygotic twins). It was found that genetic variation accounts for 66% (95% CI 37-82%) of CDKN1A transcriptional response to radiation exposure. We developed a novel integrative multi-kinship strategy allowing investigating the role of genome-wide polymorphisms in transcriptomic radiation response, and it revealed that rs205543 (ETV6 gene), rs2287505 and rs1263612 (KLF7 gene) are significantly associated with CDKN1A expression level. The functional analysis revealed that rs6974232 (RPA3 gene), involved in mismatch repair (p value = 9.68e-04) as well as in RNA repair (p value = 1.4e-03) might have an important role in that process. Two missense polymorphisms with possible deleterious effect in humans were identified: rs1133833 (AKIP1 gene) and rs17362588 (CCDC141 gene). In summary, the data presented here support the validity of this novel integrative data analysis strategy to provide insights into the identification of SNPs potentially influencing radiation sensitivity. Further investigations in radiation response research at the genomic level should be therefore continued to confirm these findings.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Polimorfismo de Nucleotídeo Único , Tolerância a Radiação/genética , Transcriptoma , Proteínas Adaptadoras de Transdução de Sinal/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Variante 6 da Proteína do Fator de Translocação ETS
15.
Radiat Res ; 190(6): 596-604, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30234457

RESUMO

The RTGene study was focused on the development and validation of new transcriptional biomarkers for prediction of individual radiotherapy patient responses to ionizing radiation. In parallel, for validation purposes, this study incorporated conventional biomarkers of radiation exposure, including the dicentric assay. Peripheral blood samples were taken with ethical approval and informed consent from a total of 20 patients undergoing external beam radiotherapy for breast, lung, gastrointestinal or genitourinary tumors. For the dicentric assay, two samples were taken from each patient: prior to radiotherapy and before the final fraction. Blood samples were set up using standard methods for the dicentric assay. All the baseline samples had dicentric frequencies consistent with the expected background for the normal population. For blood taken before the final fraction, all the samples displayed distributions of aberrations, which are indicative of partial-body exposures. Whole-body and partial-body cytogenetic doses were calculated with reference to a 250-kVp X-ray calibration curve and then compared to the dose to blood derived using two newly developed blood dosimetric models. Initial comparisons indicated that the relationship between these measures of dose appear very promising, with a correlation of 0.88 (P = 0.001). A new Bayesian zero-inflated Poisson finite mixture method was applied to the dicentric data, and partial-body dose estimates showed no significant difference (P > 0.999) from those calculated by the contaminated Poisson technique. The next step will be further development and validation in a larger patient group.


Assuntos
Biomarcadores Tumorais/sangue , Aberrações Cromossômicas/efeitos da radiação , Cromossomos/genética , Adulto , Idoso , Teorema de Bayes , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Cromossomos/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Neoplasias Gastrointestinais/sangue , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/radioterapia , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Masculino , Pessoa de Meia-Idade , Doses de Radiação , Radiação Ionizante , Radiometria , Neoplasias Urogenitais/sangue , Neoplasias Urogenitais/patologia , Neoplasias Urogenitais/radioterapia
16.
Cancers (Basel) ; 10(7)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011886

RESUMO

Background: Microsatellite and chromosomal instability have been investigated in Hodgkin lymphoma (HL). Materials and Methods: We studied seven HL cell lines (five Nodular Sclerosis (NS) and two Mixed Cellularity (MC)) and patient peripheral blood lymphocytes (100 NS-HL and 23 MC-HL). Microsatellite instability (MSI) was assessed by PCR. Chromosomal instability and telomere dysfunction were investigated by FISH. DNA repair mechanisms were studied by transcriptomic and molecular approaches. Results: In the cell lines, we observed high MSI in L428 (4/5), KMH2, and HDLM2 (3/5), low MSI in L540, L591, and SUP-HD1, and none in L1236. NS-HL cell lines showed telomere shortening, associated with alterations of nuclear shape. Small cells were characterized by telomere loss and deletion, leading to chromosomal fusion, large nucleoplasmic bridges, and breakage/fusion/bridge (B/F/B) cycles, leading to chromosomal instability. The MC-HL cell lines showed substantial heterogeneity of telomere length. Intrachromosmal double strand breaks induced dicentric chromosome formation, high levels of micronucleus formation, and small nucleoplasmic bridges. B/F/B cycles induced complex chromosomal rearrangements. We observed a similar pattern in circulating lymphocytes of NS-HL and MC-HL patients. Transcriptome analysis confirmed the differences in the DNA repair pathways between the NS and MC cell lines. In addition, the NS-HL cell lines were radiosensitive and the MC-cell lines resistant to apoptosis after radiation exposure. Conclusions: In mononuclear NS-HL cells, loss of telomere integrity may present the first step in the ongoing process of chromosomal instability. Here, we identified, MSI as an additional mechanism for genomic instability in HL.

17.
Health Phys ; 115(1): 90-101, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29787434

RESUMO

For triage purposes following a nuclear accident, blood-based gene expression biomarkers can provide rapid dose estimates for a large number of individuals. Ionizing-radiation-responsive genes are regulated through the DNA damage-response pathway, which includes activation of multiple transcription factors. Modulators of this pathway could potentially affect the response of these biomarkers and consequently compromise accurate dose estimation calculations. In the present study, four potential confounding factors were selected: cancer condition, sex, simulated bacterial infection (lipopolysaccharide), and curcumin, an anti-inflammatory/antioxidant agent. Their potential influence on the transcriptional response to radiation of the genes CCNG1 and PHPT1, two biomarkers of radiation exposure ex vivo, was assessed. First, both CCNG1 and PHPT1 were detected in vivo in blood samples from radiotherapy patients and as such were validated as biomarkers of exposure. Importantly, their basal expression level was slightly but significantly affected in vivo by patients' cancer condition. Moreover, lipopolysaccharide stimulation of blood irradiated ex vivo led to a significant modification of CCNG1 and PHPT1 transcriptional response in a dose- and time-dependent manner with opposite regulatory effects. Curcumin also affected CCNG1 and PHPT1 transcriptional response counteracting some of the radiation induction. No differences were observed based on sex. Dose estimations calculated using linear regression were affected by lipopolysaccharide and curcumin. In conclusion, several confounding factors tested in this study can indeed modulate the transcriptional response of CCNG1 and PHPT1 and consequently can affect radiation exposure dose estimations but not to a level which should prevent the biomarkers' use for triage purposes.


Assuntos
Biomarcadores/sangue , Ciclina G1/genética , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Neoplasias/sangue , Monoéster Fosfórico Hidrolases/genética , Dosagem Radioterapêutica/normas , Radioterapia de Intensidade Modulada , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Estudos de Casos e Controles , Curcumina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/radioterapia
18.
Leukemia ; 32(6): 1435-1444, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29556020

RESUMO

Epidemiological studies have demonstrated an increased leukemia incidence following ionizing radiation exposure, but to date, the target cells and underlying mechanisms of radiation leukemogenesis remain largely unidentified. We engineered a mouse model carrying a different fluorescent marker on each chromosome 2, located inside the minimum deleted region occurring after radiation exposure and recognized as the first leukemogenic event. Using this tailored model, we report that following radiation exposure, more than half of asymptomatic CBA Sfpi1 GFP/mCh mice presented with expanding clones of preleukemic hematopoietic cells harboring a hemizygous interstitial deletion of chromosome 2. Moreover, following isolation of preleukemic hematopoietic stem and progenitor cells irradiated in their native microenvironment, we identified the presence of Sfpi1 point mutations within a subpopulation of these preleukemic cells expanding rapidly (increasing from 6% to 55% in 21 days in peripheral blood in one case), hence identifying for the first time the presence of such cells within a living animal. Importantly, we also report a previously undescribed gender difference in the phenotype of the preleukemic cells and leukemia, suggesting a gender imbalance in the radiation-induced leukemic target cell. In conclusion, we provide novel insights into the sequence of molecular events occurring during the (radiation-induced) leukemic clonal evolution.


Assuntos
Leucemia Induzida por Radiação/etiologia , Pré-Leucemia/etiologia , Animais , Evolução Clonal , Progressão da Doença , Feminino , Células-Tronco Hematopoéticas/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos CBA , Mutação Puntual , Proteínas Proto-Oncogênicas/genética , Caracteres Sexuais , Transativadores/genética
19.
PLoS One ; 13(2): e0193412, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474504

RESUMO

The increasing risk of acute large-scale radiological/nuclear exposures of population underlines the necessity of developing new, rapid and high throughput biodosimetric tools for estimation of received dose and initial triage. We aimed to compare the induction and persistence of different radiation exposure biomarkers in human peripheral blood in vivo. Blood samples of patients with indicated radiotherapy (RT) undergoing partial body irradiation (PBI) were obtained soon before the first treatment and then after 24 h, 48 h, and 5 weeks; i.e. after 1, 2, and 25 fractionated RT procedures. We collected circulating peripheral blood from ten patients with tumor of endometrium (1.8 Gy per fraction) and eight patients with tumor of head and neck (2.0-2.121 Gy per fraction). Incidence of dicentrics and micronuclei was monitored as well as determination of apoptosis and the transcription level of selected radiation-responsive genes. Since mitochondrial DNA (mtDNA) has been reported to be a potential indicator of radiation damage in vitro, we also assessed mtDNA content and deletions by novel multiplex quantitative PCR. Cytogenetic data confirmed linear dose-dependent increase in dicentrics (p < 0.01) and micronuclei (p < 0.001) in peripheral blood mononuclear cells after PBI. Significant up-regulations of five previously identified transcriptional biomarkers of radiation exposure (PHPT1, CCNG1, CDKN1A, GADD45, and SESN1) were also found (p < 0.01). No statistical change in mtDNA deletion levels was detected; however, our data indicate that the total mtDNA content decreased with increasing number of RT fractions. Interestingly, the number of micronuclei appears to correlate with late radiation toxicity (r2 = 0.9025) in endometrial patients suggesting the possibility of predicting the severity of RT-related toxicity by monitoring this parameter. Overall, these data represent, to our best knowledge, the first study providing a multiparametric comparison of radiation biomarkers in human blood in vivo, which have potential for improving biological dosimetry.


Assuntos
Leucócitos/efeitos da radiação , Exposição à Radiação , Radiometria/métodos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Aberrações Cromossômicas , DNA Mitocondrial/efeitos da radiação , Relação Dose-Resposta à Radiação , Neoplasias do Endométrio/sangue , Neoplasias do Endométrio/radioterapia , Feminino , Neoplasias de Cabeça e Pescoço/sangue , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Leucócitos/patologia , Masculino , Micronúcleos com Defeito Cromossômico , Pessoa de Meia-Idade , Radioterapia/efeitos adversos , Dosagem Radioterapêutica , Transcrição Gênica/efeitos da radiação
20.
Sci Rep ; 8(1): 684, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330481

RESUMO

Previous investigations in gene expression changes in blood after radiation exposure have highlighted its potential to provide biomarkers of exposure. Here, FDXR transcriptional changes in blood were investigated in humans undergoing a range of external radiation exposure procedures covering several orders of magnitude (cardiac fluoroscopy, diagnostic computed tomography (CT)) and treatments (total body and local radiotherapy). Moreover, a method was developed to assess the dose to the blood using physical exposure parameters. FDXR expression was significantly up-regulated 24 hr after radiotherapy in most patients and continuously during the fractionated treatment. Significance was reached even after diagnostic CT 2 hours post-exposure. We further showed that no significant differences in expression were found between ex vivo and in vivo samples from the same patients. Moreover, potential confounding factors such as gender, infection status and anti-oxidants only affect moderately FDXR transcription. Finally, we provided a first in vivo dose-response showing dose-dependency even for very low doses or partial body exposure showing good correlation between physically and biologically assessed doses. In conclusion, we report the remarkable responsiveness of FDXR to ionising radiation at the transcriptional level which, when measured in the right time window, provides accurate in vivo dose estimates.


Assuntos
Biomarcadores/metabolismo , Ferredoxina-NADP Redutase/metabolismo , Irradiação Corporal Total , Adulto , Idoso , Idoso de 80 Anos ou mais , Curcumina/farmacologia , Feminino , Ferredoxina-NADP Redutase/genética , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Neoplasias/metabolismo , Neoplasias/radioterapia , RNA/sangue , RNA/efeitos dos fármacos , Tomografia Computadorizada por Raios X , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...