Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 16(4): 046002, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31018187

RESUMO

OBJECTIVE: Recent developments in peripheral nerve electrodes allow the efficient and selective neuromodulation of somatic and autonomic nerves, which has proven beneficial in specific bioelectronic medical applications. However, current most clinical devices are wired and powered by implantable batteries which suffer from several limitations. We recently developed a sub-millimeter inductively powered neural stimulator (electroparticle; EP), and in this study, we report the integration of the EP onto commercial cuff electrodes (EP-C) allowing the wireless activation of peripheral nerves. APPROACH: The current output of this device was defined at different magnetic field strenghts, and with respect to external antenna distance and activation angles. In acute in vivo testing, stimulation of the rat sciatic nerve (ScN) with the EP-C was able to evoke motor responses quantified by 3D tracking of the hind limb movement. Motor recruitment curves were obtained in response to variations in magnetic field strength (0-92.91 A m-1), stimulation frequencies (2-7 Hz), and pulse widths (50-200 µs). MAIN RESULTS: The results show constant output voltage throughout 50 400 stimulating cycles on a benchtop setting, and successful ScN motor activation with a 4 cm distance between external antenna and receiver. We achieved optimal motor recruitment indicated by maximizing range of hindlimb movement (6.01 ± 2.92 mm) with a magnetic field of 40.02 ± 2.85 A m-1 and 150 µs pulse width. Stimulating pulse width or frequency did not significantly influence motor recruitment. SIGNIFICANCE: We confirmed that continuous stimulation for 14 min using monophasic pulses did not deleteriously affect the evoked motor responses when compared to wired charge-balanced biphasic electrical stimulation. We observed, however, a 36%-44% decrease in the evoked limb movement in both groups over time due to muscle fatigue. This study shows that the EP-C device can be used effectively for peripheral nerve neuromodulation.


Assuntos
Terapia por Estimulação Elétrica/métodos , Potencial Evocado Motor/fisiologia , Neuroestimuladores Implantáveis , Nervo Isquiático/fisiologia , Tecnologia sem Fio , Animais , Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Campos Eletromagnéticos , Microeletrodos , Nervos Periféricos/fisiologia , Ratos , Tecnologia sem Fio/instrumentação
2.
J Neural Eng ; 16(2): 026022, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30620935

RESUMO

OBJECTIVE: Neurostimulation technologies are important for studying neural circuits and the connections that underlie neurological and psychiatric disorders. However, current methods come with limitations such as the restraint on movement imposed by the wires delivering stimulation. The objective of this study was to assess whether the e-Particle (EP), a novel wireless neurostimulator, could sufficiently stimulate the brain to modify behavior without these limitations. APPROACH: Rats were implanted with the EP and a commercially available stimulating electrode. Animals received rewarding brain stimulation, and performance in a conditioned place preference (CPP) task was measured. To ensure stimulation-induced neuronal activation, immediate early gene c-fos expression was also measured. MAIN RESULTS: The EP was validated in a commonly used CPP task by demonstrating that (1) wireless stimulation via the EP induced preference behavior that was comparable to that induced by standard wired electrodes and (2) neuronal activation was observed in projection targets of the stimulation site. SIGNIFICANCE: The EP may help achieve a better understanding of existing brain stimulation methods while overcoming their limitations. Validation of the EP in a behavioral model suggests that the benefits of this technology may extend to other areas of animal research and potentially to human clinical applications.


Assuntos
Encéfalo/fisiologia , Condicionamento Operante/fisiologia , Neuroestimuladores Implantáveis/normas , Desempenho Psicomotor/fisiologia , Tecnologia sem Fio/normas , Animais , Estimulação Elétrica/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Tecnologia sem Fio/instrumentação
3.
Front Neurosci ; 11: 659, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29230164

RESUMO

Wireless neural stimulators are being developed to address problems associated with traditional lead-based implants. However, designing wireless stimulators on the sub-millimeter scale (<1 mm3) is challenging. As device size shrinks, it becomes difficult to deliver sufficient wireless power to operate the device. Here, we present a sub-millimeter, inductively powered neural stimulator consisting only of a coil to receive power, a capacitor to tune the resonant frequency of the receiver, and a diode to rectify the radio-frequency signal to produce neural excitation. By replacing any complex receiver circuitry with a simple rectifier, we have reduced the required voltage levels that are needed to operate the device from 0.5 to 1 V (e.g., for CMOS) to ~0.25-0.5 V. This reduced voltage allows the use of smaller receive antennas for power, resulting in a device volume of 0.3-0.5 mm3. The device was encapsulated in epoxy, and successfully passed accelerated lifetime tests in 80°C saline for 2 weeks. We demonstrate a basic proof-of-concept using stimulation with tens of microamps of current delivered to the sciatic nerve in rat to produce a motor response.

4.
Sci Rep ; 7: 46745, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28447624

RESUMO

Electronic devices placed in the gastrointestinal (GI) tract for prolonged periods have the potential to transform clinical evaluation and treatment. One challenge to the deployment of such gastroresident electronics is the difficulty in powering millimeter-sized electronics devices without using batteries, which compromise biocompatibility and long-term residence. We examined the feasibility of leveraging mid-field wireless powering to transfer power from outside of the body to electronics at various locations along the GI tract. Using simulations and ex vivo measurements, we designed mid-field antennas capable of operating efficiently in tissue at 1.2 GHz. These antennas were then characterized in vivo in five anesthetized pigs, by placing one antenna outside the body, and the other antenna inside the body endoscopically, at the esophagus, stomach, and colon. Across the animals tested, mean transmission efficiencies of -41.2, -36.1, and -34.6 dB were achieved in vivo while coupling power from outside the body to the esophagus, stomach, and colon, respectively. This corresponds to power levels of 37.5 µW, 123 µW and 173 µW received by antennas in the respective locations, while keeping radiation exposure levels below safety thresholds. These power levels are sufficient to wirelessly power a range of medical devices from outside of the body.


Assuntos
Eletrônica/métodos , Desenho de Equipamento/métodos , Trato Gastrointestinal , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Animais , Fontes de Energia Elétrica , Eletrônica/instrumentação , Eletrônica Médica/instrumentação , Eletrônica Médica/métodos , Endoscopia Gastrointestinal , Desenho de Equipamento/instrumentação , Feminino , Humanos , Miniaturização , Reprodutibilidade dos Testes , Suínos
5.
Environ Toxicol Chem ; 34(3): 467-79, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25376510

RESUMO

Potentially toxic levels of 3 naturally occurring chemical stressors (dissolved sulfide, ammonia, and iron) can appear in freshwater sediments, although their roles in shaping ecosystem structure (i.e., plant and animal communities) and function (e.g., biologically mediated elemental cycles) have received little study. The present critical review discusses the prevalence and ecological effects of potentially toxic concentrations of sulfide, ammonia, and iron in uncontaminated freshwater sediments, including a review of the literature as well as a case study presenting previously unpublished data on sediment porewaters from a diverse set of shallow (<2 m) freshwater ecosystems in southwest Michigan, USA. Measured concentrations are compared with surface water quality criteria established by the US Environmental Protection Agency (USEPA) and with acute and chronic toxic thresholds in the published literature, where available. Based on USEPA criteria for aquatic life for these 3 stressors, the benthic environment of almost every freshwater ecosystem sampled was theoretically stressful to some component of aquatic life in some area or at some time (i.e., in at least 1 sample), and 54% of samples exceeded more than 1 criterion simultaneously. Organismal tolerances to chemical stressors vary, so the observed concentrations are likely shaping benthic animal communities and influencing rates of ecosystem processes. Consideration of the role of natural chemical stressors is important in shaping freshwater benthic environments and in developing bioassessments, restoration goals, and remediation plans. Environ Toxicol Chem 2015;34:467-479. © 2014 SETAC.


Assuntos
Amônia/análise , Água Doce/química , Sedimentos Geológicos/química , Ferro/análise , Sulfetos/análise , Poluentes Químicos da Água/análise
6.
Proc Natl Acad Sci U S A ; 108(1): 214-9, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173258

RESUMO

Nitrous oxide (N(2)O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N(2)O via microbial denitrification that converts N to N(2)O and dinitrogen (N(2)). The fraction of denitrified N that escapes as N(2)O rather than N(2) (i.e., the N(2)O yield) is an important determinant of how much N(2)O is produced by river networks, but little is known about the N(2)O yield in flowing waters. Here, we present the results of whole-stream (15)N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N(2)O at rates that increase with stream water nitrate (NO(3)(-)) concentrations, but that <1% of denitrified N is converted to N(2)O. Unlike some previous studies, we found no relationship between the N(2)O yield and stream water NO(3)(-). We suggest that increased stream NO(3)(-) loading stimulates denitrification and concomitant N(2)O production, but does not increase the N(2)O yield. In our study, most streams were sources of N(2)O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y(-1) of anthropogenic N inputs to N(2)O in river networks, equivalent to 10% of the global anthropogenic N(2)O emission rate. This estimate of stream and river N(2)O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.


Assuntos
Desnitrificação/fisiologia , Monitoramento Ambiental/estatística & dados numéricos , Efeito Estufa , Óxido Nitroso/metabolismo , Rios/química , Monitoramento Ambiental/métodos , Espectrometria de Massas , Modelos Teóricos , Isótopos de Nitrogênio/análise , Estados Unidos
7.
Environ Pollut ; 158(10): 3225-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20724046

RESUMO

Denitrification is a process that reduces nitrogen levels in headwaters and other streams. We compared nirS and nirK abundances with the absolute rate of denitrification, the longitudinal coefficient of denitrification (i.e., Kden, which represents optimal denitrification rates at given environmental conditions), and water quality in seven prairie streams to determine if nir-gene abundances explain denitrification activity. Previous work showed that absolute rates of denitrification correlate with nitrate levels; however, no correlation has been found for denitrification efficiency, which we hypothesise might be related to gene abundances. Water-column nitrate and soluble-reactive phosphorus levels significantly correlated with absolute rates of denitrification, but nir-gene abundances did not. However, nirS and nirK abundances significantly correlated with Kden, as well as phosphorus, although no correlation was found between Kden and nitrate. These data confirm that absolute denitrification rates are controlled by nitrate load, but intrinsic denitrification efficiency is linked to nirS and nirK gene abundances.


Assuntos
Proteínas de Bactérias/genética , Desnitrificação/genética , Nitrogênio/análise , Rios/química , Poluentes Químicos da Água/análise , Ecossistema , Rios/microbiologia
8.
Environ Sci Technol ; 43(12): 4273-9, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19603634

RESUMO

Human modification of natural streams by urbanization has led to more homogeneous channel surfaces; however, the influence of channel simplification on in situ microbial distribution and function is poorly characterized. For example, denitrification, a microbial process that reduces soluble nitrogen (N) levels, requires peripheral anoxic zones that might be lost in artificial channels such as those with a concrete lining. To examine how microbial function might be influenced by channel simplification, we quantified denitrification rates and conditions in microbial mats within an urban concrete channel. We quantified spatial and diurnal patterns of nitrate uptake, diurnal dissolved oxygen (DO) levels, and nutrient conditions, along with the spatial distribution of DO, solids, chlorophyll a, and genes associated with denitrification (nirS and nirK), ammonia-oxidizing bacteria (AOB), cyanobacteria, and algal chloroplasts. Despite the channel being superficially homogeneous, nir genes were distributed in a patchy manner. Two types of gene patches were observed: one associated with nirK, which had diurnally variable DO levels and high nocturnal nitrate uptake rates, and the other associated with nirS, which had elevated AOB genes, thicker layers of mud, and an apparent 24 h nitrate uptake. All active nir patches had elevated microbial photosynthetic genes. Results implythat even artificial channels, with reduced macroscale heterogeneity, can sustain significant rates of denitrification, although the responsible communities vary with space and time. This patchiness has significant implications to extending local data to landscape level predictions and field sampling strategies but also suggests alternate channel designs to increase N retention rates.


Assuntos
Bactérias/genética , Nitrogênio/química , Nitrogênio/metabolismo , Rios/química , Poluentes Químicos da Água/química , Cidades , Conservação dos Recursos Naturais/métodos , Ecossistema , Genes Bacterianos , Nitratos/química , Poluição Química da Água/prevenção & controle
9.
Nature ; 452(7184): 202-5, 2008 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-18337819

RESUMO

Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20-25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.


Assuntos
Ecossistema , Atividades Humanas , Nitratos/análise , Nitratos/metabolismo , Nitritos/análise , Nitritos/metabolismo , Rios/química , Agricultura , Bactérias/metabolismo , Simulação por Computador , Geografia , Nitrogênio/análise , Nitrogênio/metabolismo , Isótopos de Nitrogênio , Plantas/metabolismo , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...