Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 6492, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753816

RESUMO

Zika virus (ZIKV), a flavivirus transmitted primarily by infected mosquitos, can cause neurological symptoms such as Guillian-Barré syndrome and microcephaly. We developed several vaccinia virus (VACV) vaccine candidates for ZIKV based on replication-inducible VACVs (vINDs) expressing ZIKV pre-membrane (prM) and envelope (E) proteins (vIND-ZIKVs). These vIND-ZIKVs contain elements of the tetracycline operon and replicate only in the presence of tetracyclines. The pool of vaccine candidates was narrowed to one vIND-ZIKV containing a novel mutation in the signal peptide of prM that led to higher expression and secretion of E and production of virus-like particles, which was then tested for safety, immunogenicity, and efficacy in mice. vIND-ZIKV grows to high titers in vitro in the presence of doxycycline (DOX) but is replication-defective in vivo in the absence of DOX, causing no weight loss in mice. C57BL/6 mice vaccinated once with vIND-ZIKV in the absence of DOX (as a replication-defective virus) developed robust levels of E-peptide-specific IFN-γ-secreting splenocytes and anti-E IgG titers, with modest levels of serum-neutralizing antibodies. Vaccinated mice treated with anti-IFNAR1 antibody were completely protected from ZIKV viremia post-challenge after a single dose of vIND-ZIKV. Furthermore, mice with prior immunity to VACV developed moderate anti-E IgG titers that increased after booster vaccination, and were protected from viremia only after two vaccinations with vIND-ZIKV.


Assuntos
Imunogenicidade da Vacina , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vaccinia virus/genética , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Chlorocebus aethiops , Feminino , Células HeLa , Humanos , Imunoglobulina G/imunologia , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/citologia , Baço/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vaccinia virus/fisiologia , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Replicação Viral
2.
J Appl Biomech ; 36(4): 244-248, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396870

RESUMO

Virtual reality (VR) paradigms have proved to be a valid method to challenge and perturb balance. There is little consensus in the literature on the best protocol design to perturb balance and induce postural sway. Current VR interventions still lack a well-defined standardized metric to generate a virtual environment that can perturb balance in an efficacious, lifelike, and repeatable manner. The objective of this study was to investigate different configurations of amplitude and frequency in an anterior-posterior translation VR environment, that is, lifelike and scaled. Thirteen young adults with no conditions affecting balance were recruited. Balance was challenged by anterior-posterior sinusoidal movement of the lab image within the VR headset. Four different amplitudes of the sinusoidal movement were tested: 1, 5, 10, and 20 cm, with each amplitude being presented at 2 test frequencies : 0.5 and 0.25 Hz. Mean center of pressure velocity was significantly greater than baseline at 0.5 Hz and amplitudes of 10 and 20 cm. Mean center of pressure at approximate entropy was greater than baseline at 0.5 Hz and amplitude of 20 cm. The results suggest that sinusoidal movement of a realistic VR environment produces altered balance compared with baseline quiet standing, but only under specific movement parameters.

3.
Mol Ther Methods Clin Dev ; 17: 731-738, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32346550

RESUMO

Vaccinia virus (VACV) was successfully used as a vaccine in the smallpox eradication campaign. Since then, it has been widely used in the development of vaccine and therapeutic vectors. However, methods of generating and purifying recombinant VACVs (rVACVs) are often time-consuming, cumbersome, and in some cases require specialized cell lines or equipment. Here, we describe a novel EPPIC (Efficient Purification by Parental Inducer Constraint) platform for the rapid generation of rVACVs using a replication-inducible VACV (vIND) as a parental virus for homologous recombination. Purification of the rVACV from the parental vIND is achieved by two serial passages in the absence of inducer (i.e., parental inducer "constraint") in standard laboratory cell lines, without the need for specialized equipment, within 1 week. We determined the optimal conditions for homologous recombination and serial purification and generated a suite of vIND parental viruses to facilitate customization of the platform. Importantly, the EPPIC platform can be adapted to rapidly generate replication-deficient and replication-competent rVACVs expressing vaccine or therapeutic antigens, with or without screening markers, by simple modifications to a DNA shuttle vector, thus allowing the rapid development, updating, and refinement of personalized or custom vaccines and therapeutic vectors in a matter of days.

4.
PLoS One ; 15(4): e0230711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240193

RESUMO

Vaccinia virus (VACV) has been used extensively as the vaccine against smallpox and as a viral vector for the development of recombinant vaccines and cancer therapies. Replication-competent, non-attenuated VACVs induce strong, long-lived humoral and cell-mediated immune responses and can be effective oncolytic vectors. However, complications from uncontrolled VACV replication in vaccinees and their close contacts can be severe, particularly in individuals with predisposing conditions. In an effort to develop replication-competent VACV vectors with improved safety, we placed VACV late genes encoding core or virion morphogenesis proteins under the control of tet operon elements to regulate their expression with tetracycline antibiotics. These replication-inducible VACVs would only express the selected genes in the presence of tetracyclines. VACVs inducibly expressing the A3L or A6L genes replicated indistinguishably from wild-type VACV in the presence of tetracyclines, whereas there was no evidence of replication in the absence of antibiotics. These outcomes were reflected in mice, where the VACV inducibly expressing the A6L gene caused weight loss and mortality equivalent to wild-type VACV in the presence of tetracyclines. In the absence of tetracyclines, mice were protected from weight loss and mortality, and viral replication was not detected. These findings indicate that replication-inducible VACVs based on the conditional expression of the A3L or A6L genes can be used for the development of safer, next-generation live VACV vectors and vaccines. The design allows for administration of replication-inducible VACV in the absence of tetracyclines (as a replication-defective vector) or in the presence of tetracyclines (as a replication-competent vector) with enhanced safety.


Assuntos
Vetores Genéticos/administração & dosagem , Tetraciclinas/farmacologia , Vaccinia virus/crescimento & desenvolvimento , Vacínia/prevenção & controle , Vírion/crescimento & desenvolvimento , Replicação Viral , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinas Sintéticas/administração & dosagem , Vacínia/genética , Vacínia/virologia , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/genética , Proteínas Virais/genética , Vírion/efeitos dos fármacos
5.
Vaccines (Basel) ; 8(1)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121277

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) viruses are a major cause of disease and economic loss in pigs worldwide. High genetic diversity among PRRSV strains is problematic for successful disease control by vaccination. Mosaic DNA and vaccinia (VACV) vaccines were developed in order to improve protection against heterologous PRRSV strains. METHODS: Piglets were primed and boosted with GP5-Mosaic DNA vaccine and recombinant GP5-Mosaic VACV (rGP5-Mosaic VACV), respectively. Pigs vaccinated with rGP5-WT (VR2332) DNA and rGP5-WT VACV, or empty vector DNA and empty VACV respectively, served as controls. Virus challenge was given to separate groups of vaccinated pigs with VR2332 or MN184C. Necropsies were performed 14 days after challenge. RESULTS: Vaccination with the GP5-Mosaic-based vaccines resulted in cellular reactivity and higher levels of neutralizing antibodies to both VR2332 and MN184C PRRSV strains. In contrast, vaccination of animals with the GP5-WT vaccines induced responses only to VR2332. Furthermore, vaccination with the GP5-Mosaic based vaccines resulted in protection against challenge with two heterologous virus strains, as demonstrated by the significantly lower viral loads in serum, tissues, porcine alveolar macrophages (PAMs), and bronchoalveolar lavage (BAL) fluids, and less severe lung lesions after challenge with either MN184C or VR2332, which have only 85% identity. In contrast, significant protection by the GP5-WT based vaccines was only achieved against the VR2332 strain. Conclusions: GP5-Mosaic vaccines, using a DNA-prime/VACV boost regimen, conferred protection in pigs against heterologous viruses.

7.
PLoS One ; 14(1): e0208801, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30703122

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV), is a highly mutable RNA virus that affects swine worldwide and its control is very challenging due to its formidable heterogeneity in the field. In the present study, DNA vaccines constructed with PRRSV GP5-Mosaic sequences were complexed to cationic liposomes and administered to experimental pigs by intradermal and intramuscular injection, followed by three boosters 14, 28 and 42 days later. The GP5-Mosaic vaccine thus formulated was immunogenic and induced protection from challenge in vaccinated pigs comparable to that induced by a wild type (VR2332) GP5 DNA vaccine (GP5-WT). Periodic sampling of blood and testing of vaccine-induced responses followed. Interferon-γ (IFN-γ) mRNA expression by virus-stimulated peripheral blood mononuclear cells (PBMCs) of GP5-Mosaic-vaccinated pigs was significantly higher compared to pigs vaccinated with either GP5-WT or empty vector at 21, 35 and 48 days after vaccination. Cross-reactive cellular responses were also demonstrated in GP5-Mosaic vaccinated pigs after stimulation of PBMCs with divergent strains of PRRSV. Thus, significantly higher levels of IFN-γ mRNA were detected when PBMCs from GP5-Mosaic-vaccinated pigs were stimulated by four Genotype 2 strains (VR2332, NADC9, NADC30 and SDSU73), which have at least 10% difference in GP5 amino acid sequences, while such responses were recorded only upon VR2332 stimulation in GP5-WT-vaccinated pigs. In addition, the levels of virus-specific neutralizing antibodies were higher in GP5-Mosaic or GP5-WT vaccinated pigs than those in vector-control pigs. The experimental pigs vaccinated with either the GP5-Mosaic vaccine or the GP5-WT vaccine were partially protected from challenge with VR2332, as measured by significantly lower viral loads in sera and tissues and lower lung lesion scores than the vector control group. These data demonstrate that the GP5-Mosaic vaccine can induce cross-reactive cellular responses to diverse strains, neutralizing antibodies, and protection in pigs.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Interferon gama/metabolismo , Leucócitos Mononucleares/metabolismo , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , RNA Mensageiro/metabolismo , Suínos , Proteínas Virais/imunologia , Vacinas Virais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...