Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(1): e14405, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206097

RESUMO

The 190 kb megaplasmid pMP7017 of Bifidobacterium breve JCM7017 represents the first conjugative and largest plasmid characterised within this genus to date. In the current study, we adopted an integrated approach combining transcriptomics, whole genome comparative analysis and metagenomic data mining to understand the biology of pMP7017 and related megaplasmids, and to assess the impact of plasmid-carriage on the host strain. The data generated revealed variations within basic features of promoter elements which correlate with a high level of transcription on the plasmid and highlight the transcriptional activity of genes encoding both offensive and defensive adaptations, including a Type IIL restriction-modification system, an anti-restriction system and four Type II toxin-antitoxin systems. Furthermore, a highly transcribed tmRNA, which likely provides translational support to the host strain, was identified, making pMP7017 the first plasmid of the Bifidobacterium genus and the smallest plasmid known to express a tmRNA. Analyses of synteny and variability among pMP7017 and related plasmids indicate substantial diversity in gene organisation and accessory gene cargo highlighting diverse (co-)evolution and potential host-specific rearrangements and adaptations. Systematic analysis of the codon usage profile of transcriptionally active pMP7017-encoded genes suggests that pMP7017 originated from (sub)species of Bifidobacterium longum. Furthermore, mining of metagenomic data suggests the presence of pMP7017-homologues in ~10% of microbiome samples, mostly infants and/or mothers from various geographical locations. Comparative transcriptome analysis of the B. breve UCC2003 chromosome in the presence or absence of pMP7017 revealed differential expression of genes representing 8% of the total gene pool. Genes involved in genetic information processing were exclusively upregulated, while altered expression of genes involved in biofilm production and polysaccharide biosynthesis was also observed.


Assuntos
Bifidobacterium breve , Humanos , Bifidobacterium breve/genética , Bifidobacterium breve/metabolismo , Transcriptoma , Bifidobacterium/genética , Plasmídeos/genética , Perfilação da Expressão Gênica
2.
Methods Mol Biol ; 2642: 403-427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36944891

RESUMO

Research to date on abiotic stress responses in plants has been largely focused on the plant itself, but current knowledge indicates that microorganisms can interact with and help plants during periods of abiotic stress. In our research, we aim to investigate the interkingdom communication between the plant root and the rhizo-microbiota. Our investigation showed that miRNA plays a pivotal role in this interkingdom communication. Here, we describe a protocol for the analysis of miRNA secreted by the plant root, which includes all of the steps from the isolation of the miRNA to the bioinformatics analysis. Because of their short nucleotide length, Next Generation Sequencing (NGS) library preparation from miRNAs can be challenging due to the presence of dimer adapter contaminants. Therefore, we highlight some strategies we adopt to inhibit the generation of dimer adapters during library preparation. Current screens of miRNA targets mostly focus on the identification of targets present in the same organism expressing the miRNA. Our bioinformatics analysis challenges the barrier of evolutionary divergent organisms to identify candidate sequences of the microbiota targeted by the miRNA of plant roots. This protocol should be of interest to researchers investigating interkingdom RNA-based communication between plants and their associated microorganisms, particularly in the context of holobiont responses to abiotic stresses.


Assuntos
MicroRNAs , MicroRNAs/genética , Biblioteca Gênica , Plantas/genética , Software , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética
3.
Front Microbiol ; 12: 662959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012427

RESUMO

Galacto-oligosaccharides (GOS) represent non-digestible glycans that are commercially produced by transgalactosylation of lactose, and that are widely used as functional food ingredients in prebiotic formulations, in particular in infant nutrition. GOS consumption has been reported to enhance growth of specific bacteria in the gut, in particular bifidobacteria, thereby supporting a balanced gut microbiota. In a previous study, we assessed the hydrolytic activity and substrate specificity of seventeen predicted ß-galactosidases encoded by various species and strains of infant-associated bifidobacteria. In the current study, we further characterized seven out of these seventeen bifidobacterial ß-galactosidases in terms of their kinetics, enzyme stability and oligomeric state. Accordingly, we established whether these ß-galactosidases are capable of synthesizing GOS via enzymatic transgalactosylation employing lactose as the feed substrate. Our findings show that the seven selected enzymes all possess such transgalactosylation activity, though they appear to differ in their efficiency by which they perform this reaction. From chromatography analysis, it seems that these enzymes generate two distinct GOS mixtures: GOS with a relatively short or long degree of polymerization profile. These findings may be the stepping stone for further studies aimed at synthesizing new GOS variants with novel and/or enhanced prebiotic activities and potential for industrial applications.

4.
Microb Biotechnol ; 14(4): 1494-1511, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33939264

RESUMO

pMP7017 is a conjugative megaplasmid isolated from the gut commensal Bifidobacterium breve JCM7017 and was shown to encode two putative replicases, designated here as RepA and RepB. In the current work, RepB was identified as the pMP7017 replicative initiator, as the repB gene, and its surrounding region was shown to be sufficient to allow autonomous replication in two bifidobacterial species, B. breve and Bifidobacterium longum subsp. longum. RepB was shown to bind to repeat sequence downstream of its coding sequence and this region was determined to be essential for efficient replication. Based on our results, we hypothesize that pMP7017 is an iteron-regulated plasmid (IRP) under strict auto-regulatory control. Recombinantly produced and purified RepB was determined to exist as a dimer in solution, differing from replicases of other IRPs, which exist as a mix of dimers and monomers. Furthermore, a stable low-copy Bifidobacterium-E. coli shuttle vector, pRD1.3, was created which can be employed for cloning and expression of large genes, as was demonstrated by the cloning and heterologous expression of the 5.1 kb apuB gene encoding the extracellular amylopullulanase from B. breve UCC2003 into B. longum subsp. longum NCIMB8809.


Assuntos
Bifidobacterium , Escherichia coli , Bifidobacterium/genética , Escherichia coli/genética , Vetores Genéticos , Plasmídeos/genética
5.
AMB Express ; 9(1): 9, 2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30661116

RESUMO

Bifidobacteria are among the first and most abundant bacterial colonizers of the gastrointestinal tract of (breast-fed) healthy infants. Their success of colonising the infant gut is believed to be, at least partly, due to their ability to metabolize available carbon sources by means of secreted or intracellular glycosyl hydrolases (GHs). Among these, ß-galactosidases are particularly relevant as they allow bifidobacteria to grow on ß-galactosyl-linked saccharidic substrates, which are present in copious amounts in the milk-based diet of their infant host (e.g. lactose and human milk oligosaccharides). In the present study we employed an in silico analysis to identify GH family 2 and 42 ß-galactosidases encoded by typical infant-associated bifidobacteria. Comparative genome analysis followed by characterisation of selected ß-galactosidases revealed how these GH2 and GH42 members are distributed among these infant-associated bifidobacteria, while their hydrolytic activity towards growth substrates commonly available in the infant gut were also assessed.

6.
Mol Microbiol ; 111(1): 287-301, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352131

RESUMO

Development of the human gut microbiota commences at birth, with certain bifidobacterial species representing dominant and early colonisers of the newborn gastrointestinal tract. The molecular basis of Bifidobacterium colonisation, persistence and presumed communication with the host has remained obscure. We previously identified tight adherence (Tad) pili from Bifidobacterium breve UCC2003 as an essential colonisation factor. Here, we demonstrate that bifidobacterial Tad pili also promote in vivo colonic epithelial proliferation. A significant increase in cell proliferation was detectable 5 days postadministration of B. breve UCC2003. Using advanced functional genomic approaches, bacterial strains either (a) producing the Tad2003 pili or (b) lacking the TadE or TadF pseudopilins were created. Analysis of the ability of these mutant strains to promote epithelial cell proliferation in vivo demonstrated that the pilin subunit, TadE, is the bifidobacterial molecule responsible for this proliferation response. These findings were confirmed in vitro using purified TadE protein. Our data imply that bifidobacterial Tad pili may contribute to the maturation of the naïve gut in early life through the production of a specific scaffold of extracellular protein structures, which stimulate growth of the neonatal mucosa.


Assuntos
Bifidobacterium breve/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Mucosa Intestinal/microbiologia , Bifidobacterium breve/genética , Linhagem Celular , Proteínas de Fímbrias/genética , Deleção de Genes , Humanos
7.
Appl Microbiol Biotechnol ; 102(24): 10645-10663, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30306201

RESUMO

Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain's inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.


Assuntos
Bifidobacterium animalis/crescimento & desenvolvimento , Bifidobacterium animalis/genética , Microbiologia de Alimentos/métodos , Leite/microbiologia , Animais , Bifidobacterium animalis/efeitos dos fármacos , Metabolismo dos Carboidratos , Resistência Microbiana a Medicamentos , Feminino , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Camundongos Endogâmicos BALB C , Probióticos
8.
Sci Rep ; 8(1): 10633, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006593

RESUMO

Bifidobacteria are common members of the gastro-intestinal microbiota of a broad range of animal hosts. Their successful adaptation to this particular niche is linked to their saccharolytic metabolism, which is supported by a wide range of glycosyl hydrolases. In the current study a large-scale gene-trait matching (GTM) effort was performed to explore glycan degradation capabilities in B. breve. By correlating the presence/absence of genes and associated genomic clusters with growth/no-growth patterns across a dataset of 20 Bifidobacterium breve strains and nearly 80 different potential growth substrates, we not only validated the approach for a number of previously characterized carbohydrate utilization clusters, but we were also able to discover novel genetic clusters linked to the metabolism of salicin and sucrose. Using GTM, genetic associations were also established for antibiotic resistance and exopolysaccharide production, thereby identifying (novel) bifidobacterial antibiotic resistance markers and showing that the GTM approach is applicable to a variety of phenotypes. Overall, the GTM findings clearly expand our knowledge on members of the B. breve species, in particular how their variable genetic features can be linked to specific phenotypes.


Assuntos
Bifidobacterium breve/genética , Estudos de Associação Genética , Genômica , Família Multigênica , Álcoois Benzílicos/metabolismo , Bifidobacterium breve/metabolismo , Vias Biossintéticas/genética , Biologia Computacional , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Farmacorresistência Bacteriana/genética , Glucosídeos/metabolismo , Mutagênese , Polissacarídeos Bacterianos/biossíntese , Sacarose/metabolismo
9.
Sci Rep ; 8(1): 10627, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006512

RESUMO

The non-digestible oligosaccharide fraction of maternal milk represents an important of carbohydrate and energy source for saccharolytic bifidobacteria in the gastrointestinal tract during early life. However, not all neonatal bifidobacteria isolates can directly metabolise the complex sialylated, fucosylated, sulphated and/or N-acetylglucosamine-containing oligosaccharide structures present in mothers milk. For some bifidobacterial strains, efficient carbohydrate syntrophy or crossfeeding is key to their establishment in the gut. In this study, we have adopted advanced functional genomic approaches to create single and double in-frame deletions of the N-acetyl glucosamine 6-phosphate deacetylase encoding genes, nagA1 and nagA2, of B. breve UCC2003. In vitro phenotypic analysis followed by in vivo studies on co-colonisation, mother to infant transmission, and evaluation of the relative co-establishment of B. bifidum and B. breve UCC2003 or UCC2003ΔnagA1ΔnagA2 in dam-reared neonatal mice demonstrates the importance of crossfeeding on sialic acid, fucose and N-acetylglucosamine-containing oligosaccharides for the establishment of B. breve UCC2003 in the neonatal gut. Furthermore, transcriptomic analysis of in vivo gene expression shows upregulation of genes associated with the utilisation of lactose, sialic acid, GlcNAc-6-S and fucose in B. breve UCC2003, while for UCC2003ΔnagA1ΔnagA2 only genes for lactose metabolism were upregulated.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium breve/metabolismo , Metabolismo dos Carboidratos , Trato Gastrointestinal/microbiologia , alfa-N-Acetilgalactosaminidase/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Bifidobacterium bifidum/metabolismo , Bifidobacterium breve/genética , Bifidobacterium breve/isolamento & purificação , Feminino , Trato Gastrointestinal/metabolismo , Perfilação da Expressão Gênica , Lactose/metabolismo , Camundongos , Leite/química , Leite/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oligossacarídeos/metabolismo , Simbiose , Regulação para Cima , alfa-N-Acetilgalactosaminidase/genética
10.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29500268

RESUMO

Bifidobacterial carbohydrate metabolism has been studied in considerable detail for a variety of both plant- and human-derived glycans, particularly involving the bifidobacterial prototype strain Bifidobacterium breve UCC2003. We recently elucidated the metabolic pathways by which the human milk oligosaccharide (HMO) constituents lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT) and lacto-N-biose (LNB) are utilized by B. breve UCC2003. However, to date, no work has been carried out on the regulatory mechanisms that control the expression of the genetic loci involved in these HMO metabolic pathways. In this study, we describe the characterization of three transcriptional regulators and the corresponding operator and associated (inducible) promoter sequences, with the latter governing the transcription of the genetic elements involved in LN(n)T/LNB metabolism. The activity of these regulators is dependent on the release of specific monosaccharides, which are believed to act as allosteric effectors and which are derived from the corresponding HMOs targeted by the particular locus.IMPORTANCE Human milk oligosaccharides (HMOs) are a key factor in the development of the breastfed-infant microbiota. They function as prebiotics, selecting for a specific range of microbes, including a number of infant-associated species of bifidobacteria, which are thought to provide a range of health benefits to the infant host. While much research has been carried out on elucidating the mechanisms of HMO metabolism in infant-associated bifidobacteria, to date there is very little understanding of the transcriptional regulation of these pathways. This study reveals a multicomponent transcriptional regulation system that controls the recently identified pathways of HMO metabolism in the infant-associated Bifidobacterium breve prototype strain UCC2003. This not only provides insight into the regulatory mechanisms present in other infant-associated bifidobacteria but also provides an example of a network of sequential steps regulating microbial carbohydrate metabolism.


Assuntos
Bifidobacterium breve/genética , Regulação Bacteriana da Expressão Gênica , Leite Humano/microbiologia , Oligossacarídeos/metabolismo , Elementos Reguladores de Transcrição/genética , Aleitamento Materno , Humanos , Lactente , Recém-Nascido , Redes e Vias Metabólicas , Microbiota
11.
BMC Genomics ; 19(1): 33, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310579

RESUMO

BACKGROUND: Bifidobacterium longum is a common member of the human gut microbiota and is frequently present at high numbers in the gut microbiota of humans throughout life, thus indicative of a close symbiotic host-microbe relationship. Different mechanisms may be responsible for the high competitiveness of this taxon in its human host to allow stable establishment in the complex and dynamic intestinal microbiota environment. The objective of this study was to assess the genetic and metabolic diversity in a set of 20 B. longum strains, most of which had previously been isolated from infants, by performing whole genome sequencing and comparative analysis, and to analyse their carbohydrate utilization abilities using a gene-trait matching approach. RESULTS: We analysed their pan-genome and their phylogenetic relatedness. All strains clustered in the B. longum ssp. longum phylogenetic subgroup, except for one individual strain which was found to cluster in the B. longum ssp. suis phylogenetic group. The examined strains exhibit genomic diversity, while they also varied in their sugar utilization profiles. This allowed us to perform a gene-trait matching exercise enabling the identification of five gene clusters involved in the utilization of xylo-oligosaccharides, arabinan, arabinoxylan, galactan and fucosyllactose, the latter of which is an abundant human milk oligosaccharide (HMO). CONCLUSIONS: The results showed high diversity in terms of genes and predicted glycosyl-hydrolases, as well as the ability to metabolize a large range of sugars. Moreover, we corroborate the capability of B. longum ssp. longum to metabolise HMOs. Ultimately, their intraspecific genomic diversity and the ability to consume a wide assortment of carbohydrates, ranging from plant-derived carbohydrates to HMOs, may provide an explanation for the competitive advantage and persistence of B. longum in the human gut microbiome.


Assuntos
Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo , Metabolismo dos Carboidratos , Genes Bacterianos , Genoma Bacteriano , Característica Quantitativa Herdável , Biodiversidade , Bases de Dados Genéticas , Microbioma Gastrointestinal , Humanos , Lactente , Recém-Nascido , Filogenia , Probióticos , Locos de Características Quantitativas
12.
Curr Opin Biotechnol ; 49: 217-223, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29153882

RESUMO

Comprehension of underlying mechanisms of probiotic action will support rationale selection of probiotic strains and targeted clinical study design with a higher likelihood of success. This will consequently contribute to better substantiation of health claims. Here, we aim to provide a perspective from a microbiology point of view that such comprehensive understanding is not straightforward. We show examples of well-documented probiotic effector molecules in Lactobacillus and Bifidobacterium strains, including surface-located molecules such as specific pili, S-layer proteins, exopolysaccharides, muropeptides, as well as more widely produced metabolites such as tryptophan-related and histamine-related metabolites, CpG-rich DNA, and various enzymes such as lactase and bile salt hydrolases. We also present recent advances in genetic tool development, microbiome analyses and model systems, as well as perspectives on how the field could further progress. This opinion is based on a discussion group organized at the annual meeting of the International Scientific Association on Probiotics and Prebiotics (ISAPP) in June 2017.


Assuntos
Bifidobacterium/metabolismo , Lactobacillus/metabolismo , Probióticos/metabolismo , Animais , Bifidobacterium/química , Microbioma Gastrointestinal , Humanos , Lactobacillus/química , Redes e Vias Metabólicas , Modelos Biológicos
13.
Sci Rep ; 7(1): 5648, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717159

RESUMO

Bifidobacteria are common gut commensals with purported health-promoting effects. This has encouraged scientific research into bifidobacteria, though recalcitrance to genetic manipulation and scarcity of molecular tools has hampered our knowledge on the precise molecular determinants of their health-promoting attributes and gut adaptation. To overcome this problem and facilitate functional genomic analyses in bifidobacteria, we created a large Tn5 transposon mutant library of the commensal Bifidobacterium breve UCC2003 that was further characterized by means of a Transposon Directed Insertion Sequencing (TraDIS) approach. Statistical analysis of transposon insertion distribution revealed a set of 453 genes that are essential for or markedly contribute to growth of this strain under laboratory conditions. These essential genes encode functions involved in the so-called bifid-shunt, most enzymes related to nucleotide biosynthesis and a range of housekeeping functions. Comparison to the Bifidobacterium and B. breve core genomes highlights a high degree of conservation of essential genes at the species and genus level, while comparison to essential gene datasets from other gut bacteria identified essential genes that appear specific to bifidobacteria. This work establishes a useful molecular tool for scientific discovery of bifidobacteria and identifies targets for further studies aimed at characterizing essential functions not previously examined in bifidobacteria.


Assuntos
Proteínas de Bactérias/genética , Bifidobacterium breve/crescimento & desenvolvimento , Mutagênese Insercional , Bifidobacterium breve/genética , Elementos de DNA Transponíveis , Evolução Molecular , Genes Essenciais , Genoma de Planta , Anotação de Sequência Molecular , Filogenia , Homologia de Sequência do Ácido Nucleico , Simbiose
14.
Front Microbiol ; 8: 964, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620359

RESUMO

Bacteria evolved over millennia in the presence of the vital micronutrient iron. Iron is involved in numerous processes within the cell and is essential for nearly all living organisms. The importance of iron to the survival of bacteria is obvious from the large variety of mechanisms by which iron may be acquired from the environment. Random mutagenesis and global gene expression profiling led to the identification of a number of genes, which are essential for Bifidobacterium breve UCC2003 survival under iron-restrictive conditions. These genes encode, among others, Fe-S cluster-associated proteins, a possible ferric iron reductase, a number of cell wall-associated proteins, and various DNA replication and repair proteins. In addition, our study identified several presumed iron uptake systems which were shown to be essential for B. breve UCC2003 growth under conditions of either ferric and/or ferrous iron chelation. Of these, two gene clusters encoding putative iron-uptake systems, bfeUO and sifABCDE, were further characterised, indicating that sifABCDE is involved in ferrous iron transport, while the bfeUO-encoded transport system imports both ferrous and ferric iron. Transcription studies showed that bfeUO and sifABCDE constitute two separate transcriptional units that are induced upon dipyridyl-mediated iron limitation. In the anaerobic gastrointestinal environment ferrous iron is presumed to be of most relevance, though a mutation in the sifABCDE cluster does not affect B. breve UCC2003's ability to colonise the gut of a murine model.

15.
Appl Environ Microbiol ; 82(24): 7185-7196, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27736791

RESUMO

The immune-modulating properties of certain bifidobacterial strains, such as Bifidobacterium longum subsp. longum 35624 (B. longum 35624), have been well described, although the strain-specific molecular characteristics associated with such immune-regulatory activity are not well defined. It has previously been demonstrated that B. longum 35624 produces a cell surface exopolysaccharide (sEPS), and in this study, we investigated the role played by this exopolysaccharide in influencing the host immune response. B. longum 35624 induced relatively low levels of cytokine secretion from human dendritic cells, whereas an isogenic exopolysaccharide-negative mutant derivative (termed sEPSneg) induced vastly more cytokines, including interleukin-17 (IL-17), and this response was reversed when exopolysaccharide production was restored in sEPSneg by genetic complementation. Administration of B. longum 35624 to mice of the T cell transfer colitis model prevented disease symptoms, whereas sEPSneg did not protect against the development of colitis, with associated enhanced recruitment of IL-17+ lymphocytes to the gut. Moreover, intranasal administration of sEPSneg also resulted in enhanced recruitment of IL-17+ lymphocytes to the murine lung. These data demonstrate that the particular exopolysaccharide produced by B. longum 35624 plays an essential role in dampening proinflammatory host responses to the strain and that loss of exopolysaccharide production results in the induction of local TH17 responses. IMPORTANCE: Particular gut commensals, such as B. longum 35624, are known to contribute positively to the development of mucosal immune cells, resulting in protection from inflammatory diseases. However, the molecular basis and mechanisms for these commensal-host interactions are poorly described. In this report, an exopolysaccharide was shown to be decisive in influencing the immune response to the bacterium. We generated an isogenic mutant unable to produce exopolysaccharide and observed that this mutation caused a dramatic change in the response of human immune cells in vitro In addition, the use of mouse models confirmed that lack of exopolysaccharide production induces inflammatory responses to the bacterium. These results implicate the surface-associated exopolysaccharide of the B. longum 35624 cell envelope in the prevention of aberrant inflammatory responses.


Assuntos
Infecções por Bifidobacteriales/imunologia , Bifidobacterium longum/imunologia , Polissacarídeos Bacterianos/imunologia , Células Th17/imunologia , Animais , Infecções por Bifidobacteriales/microbiologia , Bifidobacterium longum/genética , Citocinas/imunologia , Feminino , Humanos , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos BALB C
16.
Appl Environ Microbiol ; 82(22): 6611-6623, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590817

RESUMO

Bifidobacteria constitute a specific group of commensal bacteria typically found in the gastrointestinal tract (GIT) of humans and other mammals. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breastfed infants. In the present study, we investigated glycosulfatase activity in a bacterial isolate from a nursling stool sample, B. breve UCC2003. Two putative sulfatases were identified on the genome of B. breve UCC2003. The sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S) was shown to support the growth of B. breve UCC2003, while N-acetylglucosamine-3-sulfate, N-acetylgalactosamine-3-sulfate, and N-acetylgalactosamine-6-sulfate did not support appreciable growth. By using a combination of transcriptomic and functional genomic approaches, a gene cluster designated ats2 was shown to be specifically required for GlcNAc-6-S metabolism. Transcription of the ats2 cluster is regulated by a repressor open reading frame kinase (ROK) family transcriptional repressor. This study represents the first description of glycosulfatase activity within the Bifidobacterium genus. IMPORTANCE: Bifidobacteria are saccharolytic organisms naturally found in the digestive tract of mammals and insects. Bifidobacterium breve strains utilize a variety of plant- and host-derived carbohydrates that allow them to be present as prominent members of the infant gut microbiota as well as being present in the gastrointestinal tract of adults. In this study, we introduce a previously unexplored area of carbohydrate metabolism in bifidobacteria, namely, the metabolism of sulfated carbohydrates. B. breve UCC2003 was shown to metabolize N-acetylglucosamine-6-sulfate (GlcNAc-6-S) through one of two sulfatase-encoding gene clusters identified on its genome. GlcNAc-6-S can be found in terminal or branched positions of mucin oligosaccharides, the glycoprotein component of the mucous layer that covers the digestive tract. The results of this study provide further evidence of the ability of this species to utilize mucin-derived sugars, a trait which may provide a competitive advantage in both the infant gut and adult gut.


Assuntos
Bifidobacterium breve/genética , Fezes/microbiologia , Genes Bacterianos , Família Multigênica , Sulfatases/genética , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Bifidobacterium breve/enzimologia , Bifidobacterium breve/crescimento & desenvolvimento , Bifidobacterium breve/metabolismo , Aleitamento Materno , DNA Bacteriano/genética , Trato Gastrointestinal/microbiologia , Perfilação da Expressão Gênica , Genoma Bacteriano , Genômica/métodos , Humanos , Lactente , Oligossacarídeos/metabolismo , Sulfatases/classificação , Sulfatases/isolamento & purificação
17.
PLoS One ; 11(9): e0162983, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27656878

RESUMO

The Bifibobacterium longum subsp. longum 35624™ strain (formerly named Bifidobacterium longum subsp. infantis) is a well described probiotic with clinical efficacy in Irritable Bowel Syndrome clinical trials and induces immunoregulatory effects in mice and in humans. This paper presents (a) the genome sequence of the organism allowing the assignment to its correct subspeciation longum; (b) a comparative genome assessment with other B. longum strains and (c) the molecular structure of the 35624 exopolysaccharide (EPS624). Comparative genome analysis of the 35624 strain with other B. longum strains determined that the sub-speciation of the strain is longum and revealed the presence of a 35624-specific gene cluster, predicted to encode the biosynthetic machinery for EPS624. Following isolation and acid treatment of the EPS, its chemical structure was determined using gas and liquid chromatography for sugar constituent and linkage analysis, electrospray and matrix assisted laser desorption ionization mass spectrometry for sequencing and NMR. The EPS consists of a branched hexasaccharide repeating unit containing two galactose and two glucose moieties, galacturonic acid and the unusual sugar 6-deoxy-L-talose. These data demonstrate that the B. longum 35624 strain has specific genetic features, one of which leads to the generation of a characteristic exopolysaccharide.

18.
Microb Cell Fact ; 15: 72, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27142164

RESUMO

BACKGROUND: Among the oligosaccharides that may positively affect the gut microbiota, xylo-oligosaccharides (XOS) and arabinoxylan oligosaccharides (AXOS) possess promising functional properties. Ingestion of XOS has been reported to contribute to anti-oxidant, anti-bacterial, immune-modulatory and anti-diabetic activities. Because of the structural complexity and chemical heterogeneity, complete degradation of xylan-containing plant polymers requires the synergistic activity of several enzymes. Endo-xylanases and ß-D-xylosidases, collectively termed xylanases, represent the two key enzymes responsible for the sequential hydrolysis of xylan. Xylanase cocktails are used on an industrial scale for biotechnological purposes. Lactobacillus rossiae DSM 15814(T) can utilize an extensive set of carbon sources, an ability that is likely to contribute to its adaptive ability. In this study, the capacity of this strain to utilize XOS, xylan, D-xylose and L-arabinose was investigated. RESULTS: Genomic and transcriptomic analyses revealed the presence of two gene clusters, designated xyl and ara, encoding proteins predicted to be responsible for XOS uptake and hydrolysis and D-xylose utilization, and L-arabinose metabolism, respectively. The deduced amino acid sequence of one of the genes of the xyl gene cluster, LROS_1108 (designated here as xylA), shows high similarity to (predicted) ß-D-xylosidases encoded by various lactic acid bacteria, and belongs to glycosyl hydrolase family 43. Heterologously expressed XylA was shown to completely hydrolyse XOS to xylose and showed optimal activity at pH 6.0 and 40 °C. Furthermore, ß-D-xylosidase activity of L. rossiae DSM 15814(T) was also measured under sourdough conditions. CONCLUSIONS: This study highlights the ability of L. rossiae DSM 15814(T) to utilize XOS, which is a very useful trait when selecting starters with specific metabolic performances for sourdough fermentation or as probiotics.


Assuntos
Regulação Bacteriana da Expressão Gênica , Lactobacillus/enzimologia , Lactobacillus/genética , Xilosidases/genética , Xilosidases/metabolismo , Arabinose/metabolismo , Clonagem Molecular , Concentração de Íons de Hidrogênio , Hidrólise , Lactobacillus/classificação , Família Multigênica , Oligossacarídeos/metabolismo , Filogenia , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura , Xilose/metabolismo , Xilosidases/química
19.
Proc Natl Acad Sci U S A ; 112(16): E1984-93, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25848054

RESUMO

Escherichia coli and yeast DNA-dependent RNA polymerases are shown to mediate efficient nascent transcript stem loop formation-dependent RNA-DNA hybrid realignment. The realignment was discovered on the heteropolymeric sequence T5C5 and yields transcripts lacking a C residue within a corresponding U5C4. The sequence studied is derived from a Roseiflexus insertion sequence (IS) element where the resulting transcriptional slippage is required for transposase synthesis. The stability of the RNA structure, the proximity of the stem loop to the slippage site, the length and composition of the slippage site motif, and the identity of its 3' adjacent nucleotides (nt) are crucial for transcripts lacking a single C. In many respects, the RNA structure requirements for this slippage resemble those for hairpin-dependent transcription termination. In a purified in vitro system, the slippage efficiency ranges from 5% to 75% depending on the concentration ratios of the nucleotides specified by the slippage sequence and the 3' nt context. The only previous proposal of stem loop mediated slippage, which was in Ebola virus expression, was based on incorrect data interpretation. We propose a mechanical slippage model involving the RNAP translocation state as the main motor in slippage directionality and efficiency. It is distinct from previously described models, including the one proposed for paramyxovirus, where following random movement efficiency is mainly dependent on the stability of the new realigned hybrid. In broadening the scope for utilization of transcription slippage for gene expression, the stimulatory structure provides parallels with programmed ribosomal frameshifting at the translation level.


Assuntos
Conformação de Ácido Nucleico , RNA Mensageiro/química , Regiões Terminadoras Genéticas , Transcrição Gênica , Sequência de Aminoácidos , Sequência de Bases , Chloroflexi/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Inversão de Sequência
20.
FEMS Microbiol Lett ; 362(4)2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25688064

RESUMO

Bifidobacterium breve strains are numerically prevalent among the gut microbiota of healthy, breast-fed infants. The metabolism of sialic acid, a ubiquitous monosaccharide in the infant and adult gut, by B. breve UCC2003 is dependent on a large gene cluster, designated the nan/nag cluster. This study describes the transcriptional regulation of the nan/nag cluster and thus sialic acid metabolism in B. breve UCC2003. Insertion mutagenesis and transcriptome analysis revealed that the nan/nag cluster is regulated by a GntR family transcriptional repressor, designated NanR. Crude cell extract of Escherichia coli EC101 in which the nanR gene had been cloned and overexpressed was shown to bind to two promoter regions within this cluster, each of which containing an imperfect inverted repeat that is believed to act as the NanR operator sequence. Formation of the DNA-NanR complex is prevented in the presence of sialic acid, which we had previously shown to induce transcription of this gene cluster.


Assuntos
Bifidobacterium/genética , Bifidobacterium/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Elementos Reguladores de Transcrição , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Escherichia coli/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Mutagênese Insercional , Regiões Operadoras Genéticas , Regiões Promotoras Genéticas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Alinhamento de Sequência , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...