Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 191(7): 423, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31179522

RESUMO

Benthic habitat condition assessments are a requirement under various environmental directives. The Marine Strategy Framework Directive (MSFD), for example, challenges member states in a European sea region to perform comparable assessments of good environmental status and improve coherence of their monitoring programmes by 2020. Currently, North Sea countries operate independent monitoring programmes using nationally defined assessment areas. Lack of an agreed OSPAR or EU scale monitoring method and programme has been identified as a priority science need. This paper proposes a method for the development of a coherent and efficient spatial sampling design for benthic habitats on regional level and gives advice on optimal monitoring effort to get more accurate assessments. We use ecologically relevant assessment areas (strata) across national borders and test spatial sample allocation methods. Furthermore, we investigate the number of samples needed in each stratum to reduce the variance for estimating mean number of taxa and abundance. The stratification needs to take into account the spatial heterogeneity of the entire ecosystem. The total sample effort is optimal when sample allocation takes into account the size and benthic variability within those strata. Change point analysis helps to find a balance between sampling effort and precision of the benthic parameter estimate. A joint sampling design for the North Sea could be generated by combining current efforts, and where needed adapting existing national programmes. This serves a coordinated, region-wide, benthic condition status assessment and strengthens regional cooperation to fulfil multiple monitoring tasks, with a scientifically underpinned common approach.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Ecossistema , Monitoramento Ambiental/métodos , Invertebrados/crescimento & desenvolvimento , Animais , Ecologia , Mar do Norte , Análise Espacial
2.
Ecol Evol ; 8(15): 7673-7687, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30151181

RESUMO

Standardized and repeatable data acquisition and analyses are required to enable the mapping and condition monitoring of reefs within Marine Protected Areas (MPAs). Changes in habitat condition must be reliably identified and reported to best support evidence-based management. Biogenic reefs in temperate waters, that is, hard matter created by living organisms and raised above the seabed, provide food and shelter for many plant and animal species. This article explores the feasibility of habitat mapping, using remote sensing datasets, as well as metrics for repeatable and suitable assessment of areas of Sabellaria spinulosa for their status as biogenic reef. Data were gathered within the North Norfolk Sandbanks and Saturn Reef candidate Special Area of Conservation/Site of Community Importance in the southern North Sea. Six study areas were identified as potential locations of biogenic reef using previously acquired data, and these were targeted for further investigation using a combination of high resolution multibeam echosounder and sidescan sonar. Where potential S. spinulosa was identified from the acoustic data, a drop-down camera system was employed for visual verification. Areas of known and potential S. spinulosa reef were mapped successfully at two of the six study areas, although future approaches should take careful consideration of the seabed morphology and predominant habitat backdrop to successfully interpret such data. Camera tows from S. spinulosa reef areas were broken up into 5-s segments, with each segment scored for (a) average tube elevation; (b) average percentage cover; and (c) for the presence or absence of S. spinulosa. These metrics were utilized to create summary statistics, including a value of patchiness derived from presence/absence data, that is recommended for application as part of future monitoring programs. The application of this methodology could benefit wider assessments of similar threated or declining habitats such as intertidal Mytilus edulis beds on mixed and sandy sediments, Maerl beds, Modioulus modiolus beds, Ostrea edulis beds, and Zostera beds where patchiness may also be considered of environmental importance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...