Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1329065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390301

RESUMO

Soybean [Glycine max (L.) Merr.] is a short-day crop for which breeders want to expand the cultivation range to more northern agro-environments by introgressing alleles involved in early reproductive traits. To do so, we investigated quantitative trait loci (QTL) and expression quantitative trait loci (eQTL) regions comprised within the E8 locus, a large undeciphered region (~7.0 Mbp to 44.5 Mbp) associated with early maturity located on chromosome GM04. We used a combination of two mapping algorithms, (i) inclusive composite interval mapping (ICIM) and (ii) genome-wide composite interval mapping (GCIM), to identify major and minor regions in two soybean populations (QS15524F2:F3 and QS15544RIL) having fixed E1, E2, E3, and E4 alleles. Using this approach, we identified three main QTL regions with high logarithm of the odds (LODs), phenotypic variation explained (PVE), and additive effects for maturity and pod-filling within the E8 region: GM04:16,974,874-17,152,230 (E8-r1); GM04:35,168,111-37,664,017 (E8-r2); and GM04:41,808,599-42,376,237 (E8-r3). Using a five-step variant analysis pipeline, we identified Protein far-red elongated hypocotyl 3 (Glyma.04G124300; E8-r1), E1-like-a (Glyma.04G156400; E8-r2), Light-harvesting chlorophyll-protein complex I subunit A4 (Glyma.04G167900; E8-r3), and Cycling dof factor 3 (Glyma.04G168300; E8-r3) as the most promising candidate genes for these regions. A combinatorial eQTL mapping approach identified significant regulatory interactions for 13 expression traits (e-traits), including Glyma.04G050200 (Early flowering 3/E6 locus), with the E8-r3 region. Four other important QTL regions close to or encompassing major flowering genes were also detected on chromosomes GM07, GM08, and GM16. In GM07:5,256,305-5,404,971, a missense polymorphism was detected in the candidate gene Glyma.07G058200 (Protein suppressor of PHYA-105). These findings demonstrate that the locus known as E8 is regulated by at least three distinct genomic regions, all of which comprise major flowering genes.

2.
Genome ; 65(8): 413-425, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35658547

RESUMO

Genetic linkage maps are used to localize markers on the genome based on the recombination frequency. Most often, these maps are based on the segregation observed within a single biparental population of limited size (n < 300) where relatively few recombination events are sampled and in which some genomic regions are monomorphic because both parents carry the same alleles. Together, these two limitations affect both the resolution and extent of genome coverage of such maps. Consensus genetic maps overcome the limitations of individual genetic maps by merging the information from multiple segregating populations derived from a greater diversity of parental combinations, thus increasing the number of recombination events and reducing the number of monomorphic regions. The aim of this study was to construct a high-density consensus genetic map for single nucleotide polymorphism (SNP) markers obtained through a genotyping-by-sequencing (GBS) approach. Individual genetic maps were generated from six F4:5 mapping populations (n = 278-365), totaling 1857 individuals. The six linkage maps were then merged to produce a consensus map comprising a total of 16 311 mapped SNPs that jointly cover 99.5% of the soybean genome with only two gaps larger than 10 cM. Compared to previous soybean consensus maps, it offers a more extensive and uniform coverage.


Assuntos
Fabaceae , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Alelos , Consenso , Fabaceae/genética , Ligação Genética , Genótipo , Glycine max/genética
3.
Front Plant Sci ; 13: 887553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557742

RESUMO

The SoyaGen project was a collaborative endeavor involving Canadian soybean researchers and breeders from academia and the private sector as well as international collaborators. Its aims were to develop genomics-derived solutions to real-world challenges faced by breeders. Based on the needs expressed by the stakeholders, the research efforts were focused on maximizing realized yield through optimization of maturity and improved disease resistance. The main deliverables related to molecular breeding in soybean will be reviewed here. These include: (1) SNP datasets capturing the genetic diversity within cultivated soybean (both within a worldwide collection of > 1,000 soybean accessions and a subset of 102 short-season accessions (MG0 and earlier) directly relevant to this group); (2) SNP markers for selecting favorable alleles at key maturity genes as well as loci associated with increased resistance to key pathogens and pests (Phytophthora sojae, Heterodera glycines, Sclerotinia sclerotiorum); (3) diagnostic tools to facilitate the identification and mapping of specific pathotypes of P. sojae; and (4) a genomic prediction approach to identify the most promising combinations of parents. As a result of this fruitful collaboration, breeders have gained new tools and approaches to implement molecular, genomics-informed breeding strategies. We believe these tools and approaches are broadly applicable to soybean breeding efforts around the world.

4.
Plant Biotechnol J ; 19(2): 324-334, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32794321

RESUMO

Here, we describe a worldwide haplotype map for soybean (GmHapMap) constructed using whole-genome sequence data for 1007 Glycine max accessions and yielding 14.9 million variants as well as 4.3 M tag single-nucleotide polymorphisms (SNPs). When sampling random subsets of these accessions, the number of variants and tag SNPs plateaued beyond approximately 800 and 600 accessions, respectively. This suggests extensive coverage of diversity within the cultivated soybean. GmHapMap variants were imputed onto 21 618 previously genotyped accessions with up to 96% success for common alleles. A local association analysis was performed with the imputed data using markers located in a 1-Mb region known to contribute to seed oil content and enabled us to identify a candidate causal SNP residing in the NPC1 gene. We determined gene-centric haplotypes (407 867 GCHs) for the 55 589 genes and showed that such haplotypes can help to identify alleles that differ in the resulting phenotype. Finally, we predicted 18 031 putative loss-of-function (LOF) mutations in 10 662 genes and illustrated how such a resource can be used to explore gene function. The GmHapMap provides a unique worldwide resource for applied soybean genomics and breeding.


Assuntos
Glycine max , Melhoramento Vegetal , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Glycine max/genética
6.
Plant Genome ; 12(3): 1-11, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-33016581

RESUMO

CORE IDEAS: A gene-centric approach for haplotype definition was developed and implemented in R. The tool allows for allelic characterization at given loci in germplasm collections. Allelic status at four maturity genes is predicted on the basis of marker genotyping data. Assessing the allelic diversity within a germplasm collection and identifying individuals carrying favorable alleles is challenging. Advances in high-throughput technologies allow the genotyping of many individuals for thousands of markers but bridging the gap between single nucleotide polymorphisms (SNPs) and relevant alleles remains difficult. We developed a systematic approach that defines haplotypes from large SNP catalogs that aims to identify haplotypes that can be equated to alleles at given genes. Unlike haplotype visualization tools, our approach selects SNP markers that flank a gene and define haplotypes that correspond to this gene's alleles. We tested this approach on four known soybean [Glycine max (L.) Merr.] maturity genes (E1, GmGia, GmPhyA3, and GmPhyA2) in a collection of 67 lines and two genotypic datasets [a SNP array and genotyping-by-sequencing (GBS)]. For E1, GmGia, and GmPhyA3, we identified SNP haplotypes such that the allele found at these genes could be accurately predicted from the haplotype in 97.3% of the cases. For these genes, of the 12 known alleles in the collection, 10 and 8 could be correctly predicted from the haplotypes found with the SNP array and GBS datasets, with success rates of 98 and 97% for all allele-line combinations, respectively. The approach proved equally successful for data derived from a SNP array and GBS. However, in the case of GmPhyA2, a lack of markers in the genomic region prevented the identification of alleles, regardless of the dataset. We demonstrate the feasibility and reproducibility of our approach and identify limits to its applicability.


Assuntos
Polimorfismo de Nucleotídeo Único , Alelos , Genótipo , Haplótipos , Humanos , Reprodutibilidade dos Testes
7.
BMC Genomics ; 19(1): 167, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490606

RESUMO

BACKGROUND: To continue to meet the increasing demands of soybean worldwide, it is crucial to identify key genes regulating flowering and maturity to expand the cultivated regions into short season areas. Although four soybean genes have been successfully utilized in early maturity breeding programs, new genes governing maturity are continuously being identified suggesting that there remains as yet undiscovered loci governing agronomic traits of interest. The objective of this study was to identify novel loci and genes involved in a diverse set of early soybean maturity using genome-wide association (GWA) analyses to identify loci governing days to maturity (DTM), flowering (DTF) and pod filling (DTPF), as well as yield and 100 seed weight in Canadian environments. To do so, soybean plant introduction lines varying significantly for maturity, but classified as early varieties, were used. Plants were phenotyped for the five agronomic traits for five site-years and GWA approaches used to identify candidate loci and genes affecting each trait. RESULTS: Genotyping using genotyping-by-sequencing and microarray methods identified 67,594 single nucleotide polymorphisms, of which 31,283 had a linkage disequilibrium < 1 and minor allele frequency > 0.05 and were used for GWA analyses. A total of 9, 6, 4, 5 and 2 loci were detected for GWA analyses for DTM, DTF, DTPF, 100 seed weight and yield, respectively. Regions of interest, including a region surrounding the E1 gene for flowering and maturity, and several novel loci, were identified, with several loci having pleiotropic effects. Novel loci affecting maturity were identified on chromosomes five and 13 and reduced maturity by 7.2 and 3.3 days, respectively. Novel loci for maturity and flowering contained genes orthologous to known Arabidopsis flowering genes, while loci affecting yield and 100 seed weight contained genes known to cause dwarfism. CONCLUSIONS: This study demonstrated substantial variation in soybean agronomic traits of interest, including maturity and flowering dates as well as yield, and the utility of GWA analyses in identifying novel genetic factors underlying important agronomic traits. The loci and candidate genes identified serve as promising targets for future studies examining the mechanisms underlying the related soybean traits.


Assuntos
Estudos de Associação Genética , Glycine max/fisiologia , Locos de Características Quantitativas , Característica Quantitativa Herdável , Alelos , Mapeamento Cromossômico , Genética Populacional , Genoma de Planta , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único
8.
Plant Biotechnol J ; 16(3): 749-759, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28869792

RESUMO

Next-generation sequencing (NGS) and bioinformatics tools have greatly facilitated the characterization of nucleotide variation; nonetheless, an exhaustive description of both SNP haplotype diversity and of structural variation remains elusive in most species. In this study, we sequenced a representative set of 102 short-season soya beans and achieved an extensive coverage of both nucleotide diversity and structural variation (SV). We called close to 5M sequence variants (SNPs, MNPs and indels) and noticed that the number of unique haplotypes had plateaued within this set of germplasm (1.7M tag SNPs). This data set proved highly accurate (98.6%) based on a comparison of called genotypes at loci shared with a SNP array. We used this catalogue of SNPs as a reference panel to impute missing genotypes at untyped loci in data sets derived from lower density genotyping tools (150 K GBS-derived SNPs/530 samples). After imputation, 96.4% of the missing genotypes imputed in this fashion proved to be accurate. Using a combination of three bioinformatics pipelines, we uncovered ~92 K SVs (deletions, insertions, inversions, duplications, CNVs and translocations) and estimated that over 90% of these were accurate. Finally, we noticed that the duplication of certain genomic regions explained much of the residual heterozygosity at SNP loci in otherwise highly inbred soya bean accessions. This is the first time that a comprehensive description of both SNP haplotype diversity and SV has been achieved within a regionally relevant subset of a major crop.


Assuntos
Glycine max/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética
9.
Plant Biotechnol J ; 13(2): 211-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25213593

RESUMO

Soya bean is a major source of edible oil and protein for human consumption as well as animal feed. Understanding the genetic basis of different traits in soya bean will provide important insights for improving breeding strategies for this crop. A genome-wide association study (GWAS) was conducted to accelerate molecular breeding for the improvement of agronomic traits in soya bean. A genotyping-by-sequencing (GBS) approach was used to provide dense genome-wide marker coverage (>47,000 SNPs) for a panel of 304 short-season soya bean lines. A subset of 139 lines, representative of the diversity among these, was characterized phenotypically for eight traits under six environments (3 sites × 2 years). Marker coverage proved sufficient to ensure highly significant associations between the genes known to control simple traits (flower, hilum and pubescence colour) and flanking SNPs. Between one and eight genomic loci associated with more complex traits (maturity, plant height, seed weight, seed oil and protein) were also identified. Importantly, most of these GWAS loci were located within genomic regions identified by previously reported quantitative trait locus (QTL) for these traits. In some cases, the reported QTLs were also successfully validated by additional QTL mapping in a biparental population. This study demonstrates that integrating GBS and GWAS can be used as a powerful complementary approach to classical biparental mapping for dissecting complex traits in soya bean.


Assuntos
Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem/métodos , Glycine max/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Análise de Sequência de DNA/métodos , Cromossomos de Plantas/genética , Genoma de Planta , Desequilíbrio de Ligação/genética , Tamanho do Órgão , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Sementes/genética
10.
Genome ; 46(1): 28-47, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12669794

RESUMO

Molecular mapping of cultivated oats was conducted to update the previous reference map constructed using a recombinant inbred (RI) population derived from Avena byzantina C. Koch cv. Kanota x Avena sativa L. cv. Ogle. In the current work, 607 new markers were scored, many on a larger set of RI lines (133 vs. 71) than previously reported. A robust, updated framework map was developed to resolve linkage associations among 286 markers. The remaining 880 markers were placed individually within the most likely framework interval using chi2 tests. This molecular framework incorporates and builds on previous studies, including physical mapping and linkage mapping in additional oat populations. The resulting map provides a common tool for use by oat researchers concerned with structural genomics, functional genomics, and molecular breeding.


Assuntos
Avena/genética , Mapeamento Cromossômico , Hibridização Genética , Ligação Genética , Marcadores Genéticos , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...