Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Haematologica ; 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511268

RESUMO

Multiple Myeloma (MM) is an incurable plasma cell malignancy, that despite an unprecedented increase in overall survival, lacks truly risk-adapted or targeted treatments. A proportion of patients with MM depend on BCL-2 for survival and recently the BCL-2 antagonist venetoclax has shown clinical efficacy and safety in t(11;14) and BCL-2 overexpressing MM. However, only a small proportion of MM patients rely on BCL-2 (~20%), there is a need to broaden the patient population outside of t(11;14) that can be treated with venetoclax. Therefore, we took an unbiased screening approach and screened epigenetic modifiers to enhance venetoclax sensitivity in two non-BCL-2 dependent MM cell lines. The demethylase inhibitor 5-azacytidine was one of the lead hits from the screen, and the enhanced cell killing of the combination was confirmed in additional MM cell lines. Using dynamic BH3 profiling and immunoprecipitations we identified the potential mechanism of synergy is due to increased NOXA expression, through the integrated stress response. Knockdown of PMAIP1 or PKR partially rescues cell death of the venetoclax and 5-azacytidine combination treatment. The addition of a steroid to the combination treatment did not enhance the cell death and interestingly we found enhanced death of the immune cells with steroid addition, suggesting that a steroid-sparing regimen may be more beneficial in MM. Lastly, we show for the first time in primary MM patient samples, that 5-azacytidine enhances the response to venetoclax ex-vivo, across diverse anti-apoptotic dependencies (BCL-2 or MCL-1) and diverse cytogenetic backgrounds. Overall, our data identifies 5-azacytidine and venetoclax as an effective treatment combination and this could be a tolerable steroid-sparing regimen, particularly for elderly MM patients.

2.
Sci Rep ; 14(1): 1756, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243063

RESUMO

Dissemination of multiple myeloma into the bone marrow proceeds through sequential steps mediated by a variety of adhesion molecules and chemokines that eventually results in the extravasation of malignant plasma cells into this protective niche. Selectins are a class of C-type lectins that recognize carbohydrate structures exposed on blood borne cells and participate in the first step of the extravasation cascade, serving as brakes to slow down circulating cells enabling them to establish firm adhesion onto the endothelium. Myeloma cells enriched for the expression of selectin ligands present an aggressive disease in vivo that is refractory to bortezomib treatment and can be reverted by small molecules targeting E-selectin. In this study, we have defined the molecular determinants of the selectin ligands expressed on myeloma cells. We show that PSGL-1 is the main protein carrier of sialyl Lewisa/x-related structures in myeloma. PSGL-1 decorated with sialyl Lewisa/x is essential for P-selectin binding but dispensable for E-selectin binding. Moreover, sialylation is required for E-selectin engagement whereas high affinity binding to P-selectin occurs even in the absence of sialic acid. This study provides further knowledge on the biology of selectin ligands in myeloma, opening the way to their clinical application as diagnostic tools and therapeutic targets.


Assuntos
Selectina E , Glicoproteínas de Membrana , Mieloma Múltiplo , Selectina-P , Antígeno Sialil Lewis X , Humanos , Adesão Celular , Selectina E/metabolismo , Ligantes , Mieloma Múltiplo/metabolismo , Selectina-P/metabolismo , Glicoproteínas de Membrana/metabolismo , Linhagem Celular Tumoral
3.
Ann Surg ; 279(3): 510-520, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497667

RESUMO

OBJECTIVE: To describe immune pathways and gene networks altered following major abdominal surgery and to identify transcriptomic patterns associated with postoperative pneumonia. BACKGROUND: Nosocomial infections are a major healthcare challenge, developing in over 20% of patients aged 45 or over undergoing major abdominal surgery, with postoperative pneumonia associated with an almost 5-fold increase in 30-day mortality. METHODS: From a prospective consecutive cohort (n=150) undergoing major abdominal surgery, whole-blood RNA was collected preoperatively and at 3 time-points postoperatively (2-6, 24, and 48 h). Twelve patients diagnosed with postoperative pneumonia and 27 matched patients remaining infection-free were identified for analysis with RNA-sequencing. RESULTS: Compared to preoperative sampling, 3639 genes were upregulated and 5043 downregulated at 2 to 6 hours. Pathway analysis demonstrated innate-immune activation with neutrophil degranulation and Toll-like-receptor signaling upregulation alongside adaptive-immune suppression. Cell-type deconvolution of preoperative RNA-sequencing revealed elevated S100A8/9-high neutrophils alongside reduced naïve CD4 T-cells in those later developing pneumonia. Preoperatively, a gene-signature characteristic of neutrophil degranulation was associated with postoperative pneumonia acquisition ( P =0.00092). A previously reported Sepsis Response Signature (SRSq) score, reflecting neutrophil dysfunction and a more dysregulated host response, at 48 hours postoperatively, differed between patients subsequently developing pneumonia and those remaining infection-free ( P =0.045). Analysis of the novel neutrophil gene-signature and SRSq scores in independent major abdominal surgery and polytrauma cohorts indicated good predictive performance in identifying patients suffering later infection. CONCLUSIONS: Major abdominal surgery acutely upregulates innate-immune pathways while simultaneously suppressing adaptive-immune pathways. This is more prominent in patients developing postoperative pneumonia. Preoperative transcriptomic signatures characteristic of neutrophil degranulation and postoperative SRSq scores may be useful predictors of subsequent pneumonia risk.


Assuntos
Pneumonia , Humanos , Estudos Prospectivos , Pneumonia/diagnóstico , Transcriptoma , Perfilação da Expressão Gênica , RNA
4.
Cancers (Basel) ; 15(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174099

RESUMO

Despite significant improvements in the treatment of multiple myeloma (MM), it remains mostly incurable, highlighting a need for new therapeutic approaches. Patients with high-risk disease characteristics have a particularly poor prognosis and limited response to current frontline therapies. The recent development of immunotherapeutic strategies, particularly T cell-based agents have changed the treatment landscape for patients with relapsed and refractory disease. Adoptive cellular therapies include chimeric antigen receptor (CAR) T cells, which have emerged as a highly promising therapy, particularly for patients with refractory disease. Other adoptive cellular approaches currently in trials include T cell receptor-based therapy (TCR), and the expansion of CAR technology to natural killer (NK) cells. In this review we explore the emerging therapeutic field of adoptive cellular therapy for MM, with a particular focus on the clinical impact of these therapies for patients with high-risk myeloma.

5.
Cell Rep ; 42(5): 112475, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37167967

RESUMO

Immunosuppressive tumor microenvironments (TMEs) reduce the effectiveness of immune responses in cancer. Mesenchymal stromal cells (MSCs), precursors to cancer-associated fibroblasts (CAFs), promote tumor progression by enhancing immune cell suppression in colorectal cancer (CRC). Hyper-sialylation of glycans promotes immune evasion in cancer through binding of sialic acids to their receptors, Siglecs, expressed on immune cells, which results in inhibition of effector functions. The role of sialylation in shaping MSC/CAF immunosuppression in the TME is not well characterized. In this study, we show that tumor-conditioned stromal cells have increased sialyltransferase expression, α2,3/6-linked sialic acid, and Siglec ligands. Tumor-conditioned stromal cells and CAFs induce exhausted immunomodulatory CD8+ PD1+ and CD8+ Siglec-7+/Siglec-9+ T cell phenotypes. In vivo, targeting stromal cell sialylation reverses stromal cell-mediated immunosuppression, as shown by infiltration of CD25 and granzyme B-expressing CD8+ T cells in the tumor and draining lymph node. Targeting stromal cell sialylation may overcome immunosuppression in the CRC TME.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Microambiente Tumoral , Terapia de Imunossupressão , Células Estromais/metabolismo , Neoplasias/patologia , Fibroblastos Associados a Câncer/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
6.
Cancers (Basel) ; 15(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37046814

RESUMO

Multiple myeloma (MM) is a plasma cell disorder that develops in the bone marrow (BM) and is characterized by uncontrolled proliferation and the ability to disseminate to different sites of the skeleton. Sialofucosylated structures, particularly Sialyl Lewis a/x (SLea/x), facilitate the homing of MM cells into the BM, leading to resistance to bortezomib in vivo. Platelets have been shown to play an important role in tumor metastasis. Platelets can bind to the surface of cancer cells, forming a "cloak" that protects them from the shear stress of the bloodstream and natural killer (NK) cell-mediated cytotoxicity. In this study, we showed that the presence of SLea/x induced a strong binding of MM cells to P-selectin, leading to specific and direct interactions with platelets, which could be inhibited by a P-selectin-blocking antibody. Importantly, platelets surrounded SLea/x-enriched MM cells, protecting them from NK cell-mediated cytotoxicity. The interactions between the platelets and MM cells were also detected in BM samples obtained from MM patients. Platelet binding to SLea/x-enriched MM cells was increased in patients with symptomatic disease and at relapse. These data suggest an important role of SLea/x and platelets in MM disease progression and resistance to therapy.

7.
Cytotherapy ; 24(11): 1087-1094, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36050244

RESUMO

BACKGROUND: Natural killer (NK) cell genome editing promises to enhance the innate and alloreactive anti-tumor potential of NK cell adoptive transfer. DNA transposons are versatile non-viral gene vectors now being adapted to primary NK cells, representing important tools for research and clinical product development. AIMS AND METHODS: We set out to generate donor-derived, primary chimeric antigen receptor (CAR)-NK cells by combining the TcBuster transposon system with Epstein-Barr virus-transformed lymphoblastoid feeder cell-mediated activation and expansion. RESULTS: This approach allowed for clinically relevant NK-cell expansion capability and CAR expression, which was further enhanced by immunomagnetic selection based on binding to the CAR target protein.The resulting CAR-NK cells targeting the myeloid associated antigen CLL-1 efficiently targeted CLL-1-positive AML cell lines and primary AML populations, including a population enriched for leukemia stem cells. Subsequently, concurrent delivery of CRISPR/Cas9 cargo was applied to knockout the NK cell cytokine checkpoint cytokine-inducible SH2-containing protein (CIS, product of the CISH gene), resulting in enhanced cytotoxicity and an altered NK cell phenotype. CONCLUSIONS: This report contributes a promising application of transposon engineering to donor-derived NK cells and emphasizes the importance of feeder mediated NK cell activation and expansion to current protocols.


Assuntos
Infecções por Vírus Epstein-Barr , Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Citocinas/metabolismo , Citotoxicidade Imunológica , Elementos de DNA Transponíveis/genética , Edição de Genes , Herpesvirus Humano 4/genética , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo
8.
Blood Adv ; 6(11): 3352-3366, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35294519

RESUMO

Abnormal glycosylation is a hallmark of cancer, and the hypersialylated tumor cell surface facilitates abnormal cell trafficking and drug resistance in several malignancies, including multiple myeloma (MM). Furthermore, hypersialylation has also been implicated in facilitating evasion of natural killer (NK) cell-mediated immunosurveillance but not in MM to date. In this study, we explore the role of hypersialylation in promoting escape from NK cells. We document strong expression of sialic acid-derived ligands for Siglec-7 (Siglec-7L) on primary MM cells and MM cell lines, highlighting the possibility of Siglec-7/Siglec-7L interactions in the tumor microenvironment. Interactomics experiments in MM cell lysates revealed PSGL-1 as the predominant Siglec-7L in MM. We show that desialylation, using both a sialidase and sialyltransferase inhibitor (SIA), strongly enhances NK cell-mediated cytotoxicity against MM cells. Furthermore, MM cell desialylation results in increased detection of CD38, a well-validated target in MM. Desialylation enhanced NK cell cytotoxicity against CD38+ MM cells after treatment with the anti-CD38 monoclonal antibody daratumumab. Additionally, we show that MM cells with low CD38 expression can be treated with all trans-retinoic acid (ATRA), SIA and daratumumab to elicit a potent NK cell cytotoxic response. Finally, we demonstrate that Siglec-7KO potentiates NK cell cytotoxicity against Siglec-7L+ MM cells. Taken together, our work shows that desialylation of MM cells is a promising novel approach to enhance NK cell efficacy against MM, which can be combined with frontline therapies to elicit a potent anti-MM response.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais , Mieloma Múltiplo/tratamento farmacológico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/uso terapêutico , Microambiente Tumoral
9.
Front Immunol ; 13: 802906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222382

RESUMO

Genome engineered natural killer (NK) cell therapies are emerging as a promising cancer immunotherapy platform with potential advantages and remaining uncertainties. Feeder cells induce activation and proliferation of NK cells via cell surface receptor-ligand interactions, supported by cytokines. Feeder cell expanded NK cell products have supported several NK cell adoptive transfer clinical trials over the past decade. Genome engineered NK cell therapies, including CAR-NK cells, seek to combine innate and alloreactive NK cell anti-tumor activity with antigen specific targeting or additional modifications aimed at improving NK cell persistence, homing or effector function. The profound activating and expansion stimulus provided by feeder cells is integral to current applications of clinical-scale genome engineering approaches in donor-derived, primary NK cells. Herein we explore the complex interactions that exist between feeder cells and both viral and emerging non-viral genome editing technologies in NK cell engineering. We focus on two established clinical-grade feeder systems; Epstein-Barr virus transformed lymphoblastoid cell lines and genetically engineered K562.mbIL21.4-1BBL feeder cells.


Assuntos
Infecções por Vírus Epstein-Barr , Edição de Genes , Células Alimentadoras , Herpesvirus Humano 4 , Humanos , Células K562 , Células Matadoras Naturais
10.
Am J Hematol ; 97(5): 562-573, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35132679

RESUMO

There are limited prospective data on lenalidomide, subcutaneous bortezomib, and dexamethasone (RsqVd) in transplant-eligible/transplant-ineligible patients with newly diagnosed multiple myeloma. Reliable biomarkers for efficacy and toxicity are required to better tailor therapy. Two parallel studies were conducted by Cancer Trials Ireland (CTI; NCT02219178) and the Dana-Farber Cancer Institute (DFCI; NCT02441686). Patients received four 21-day cycles of RsqVd and could then receive either another 4 cycles of RsqVd or undergo autologous stem cell transplant. Postinduction/posttransplant, patients received lenalidomide maintenance, with bortezomib included for high-risk patients. The primary endpoint was overall response rate (ORR) after 4 cycles of RsqVd. Eighty-eight patients were enrolled and 84 treated across the two studies; median age was 64.7 (CTI study) and 60.0 years (DFCI study), and 59% and 57% had stage II-III disease. Pooled ORR after 4 cycles in evaluable patients was 93.5%, including 48.1% complete or very good partial responses (CTI study: 91.9%, 59.5%; DFCI study: 95.0%, 37.5%), and in the all-treated population was 85.7% (44.0%). Patients received a median of 4 (CTI study) and 8 (DFCI study) RsqVd cycles; 60% and 31% of patients (CTI study) and 33% and 51% of patients (DFCI study) underwent transplant or received further RsqVd induction, respectively. The most common toxicity was peripheral neuropathy (pooled: 68%, 7% grade 3-4; CTI study: 57%, 7%; DFCI study: 79%, 7%). Proteomics analyses indicated elevated kallikrein-6 in good versus poor responders, decreased midkine in good responders, and elevated macrophage inflammatory protein 1-alpha in patients who stopped treatment from neurotoxicity, suggesting predictive biomarkers warranting further investigation.


Assuntos
Mieloma Múltiplo , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bortezomib/efeitos adversos , Dexametasona/efeitos adversos , Humanos , Quimioterapia de Indução , Lenalidomida/efeitos adversos , Pessoa de Meia-Idade , Mieloma Múltiplo/terapia , Estudos Prospectivos
11.
Haematologica ; 107(2): 437-445, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33375774

RESUMO

There is a strong biological rationale for the augmentation of allogeneic natural killer (NK) cell therapies with a chimeric antigen receptor (CAR) to enhance acute myeloid leukemia (AML) targeting. CD38 is an established immunotherapeutic target in multiple myeloma and under investigation as a target antigen in AML. CD38 expression on NK cells and its further induction during ex vivo NK cell expansion represents a barrier to the development of a CD38 CAR-NK cell therapy. We set out to develop a CD38 CAR-NK cell therapy for AML, first by using an NK cell line which has low baseline CD38 expression and subsequently healthy donor expanded NK cells. To overcome anticipated fratricide due to NK cell CD38 expression when using primary expanded NK cells, we applied CRISPR/Cas9 genome editing to disrupt the CD38 gene during expansion achieving a mean knockdown efficiency of 84%. The resulting CD38 KD expanded NK cells, after expression of an affinity optimized CD38 CAR, showed reduced NK cell fratricide and an enhanced ability to target primary AML blasts. Furthermore, the cytotoxic potential of CD38 CAR-NK cells was augmented by pre-treatment of the AML cells with all-trans retinoic acid which drove enhanced CD38 expression offering a rational combination therapy. These findings support the further investigation of CD38 KD - CD38 CAR-NK cells as a viable immunotherapeutic approach to the treatment of AML.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , ADP-Ribosil Ciclase 1 , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Técnicas de Inativação de Genes , Humanos , Células Matadoras Naturais , Leucemia Mieloide Aguda/terapia , Glicoproteínas de Membrana , Receptores de Antígenos Quiméricos/genética
12.
Blood ; 139(8): 1135-1146, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34543383

RESUMO

Uproleselan (GMI-1271) is a novel E-selectin antagonist that disrupts cell survival pathways, enhances chemotherapy response, improves survival in mouse xenograft and syngeneic models, and decreases chemotherapy toxicity in vivo. A phase 1/2 study evaluated the safety, tolerability, and antileukemic activity of uproleselan (5-20 mg/kg) with MEC (mitoxantrone, etoposide, and cytarabine) among patients with relapsed/refractory (R/R) acute myeloid leukemia (AML). Among the first 19 patients, no dose-limiting toxicities were observed. The recommended phase 2 dose (RP2D) was 10 mg/kg twice daily. An additional 47 patients with R/R AML were treated with uproleselan at the RP2D plus MEC. At the RP2D, the remission rate (complete response [CR]/CR with incomplete count recovery [CRi]) was 41% (CR, 35%), and the median overall survival (OS) was 8.8 months. In a separate cohort, 25 newly diagnosed patients age ≥60 years received uproleselan at the RP2D plus cytarabine and idarubicin (7 + 3). In these frontline patients, the CR/CRi rate was 72% (CR, 52%), and the median OS was 12.6 months. The addition of uproleselan was associated with low rates of oral mucositis. E-selectin ligand expression on leukemic blasts was higher in patients with relapsed vs primary refractory AML and in newly diagnosed older patients with high-risk cytogenetics and secondary AML. In the R/R cohort, E-selectin expression >10% was associated with a higher response rate and improved survival. The addition of uproleselan to chemotherapy was well tolerated, with high remission rates, low induction mortality, and low rates of mucositis, providing a strong rationale for phase 3 randomized confirmatory studies. This trial was registered at www.clinicaltrials.gov as #NCT02306291.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Glicolipídeos/administração & dosagem , Leucemia Mieloide Aguda , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Citarabina/administração & dosagem , Citarabina/efeitos adversos , Intervalo Livre de Doença , Etoposídeo/administração & dosagem , Etoposídeo/efeitos adversos , Feminino , Glicolipídeos/efeitos adversos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Mitoxantrona/administração & dosagem , Mitoxantrona/efeitos adversos , Taxa de Sobrevida
13.
Clin Hematol Int ; 3(1): 27-33, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34595464

RESUMO

When the bortezomib [PS341], adriamycin and dexamethasone (PAD) regimen was first evaluated, the response rate in untreated patients was much superior to that elicited by conventional chemotherapeutic agents. We demonstrated the efficacy of PAD in relapsed or refractory patients by comparing the response rate obtained in 53 patients who received vincristine, adriamycin and dexamethasone (VAD) or equivalent regimen as induction therapy, using a comparative design in which each patient acted as their own control. Whereas 25 patients had a positive response to VAD, 37 patients had a response to PAD ≤ partial remission (PR) (p = 0.023). Using the more stringent response level of very good PR (VGPR) the results favored the PAD regimen very significantly (p = 0.006) (McNemars test). Similar results were seen using paired M-protein levels from individual patient comparisons. As the PAD regimen was subsequently adopted as the re-induction therapy in the British Society for Blood and Marrow Transplantation/United Kingdom Myeloma Forum Myeloma X (Intensive) trial, now concluded, we have retrospectively analyzed the findings from both studies. Comparison of response rates and adverse effects of patients having had previous autologous transplantation (Cohort 1) with the corresponding data from Myeloma X showed close correlation. These findings provide evidence that rapid results may be obtained in the evaluation of newly introduced, and potentially highly effective, anti-tumour agents by direct comparison to the response to the immediately preceding standard regimen, particularly in relatively resistant tumours.

14.
Lancet Oncol ; 22(11): 1582-1596, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655533

RESUMO

BACKGROUND: In the primary analysis of the phase 3 MAIA trial (median follow-up 28·0 months), a significant improvement in progression-free survival was observed with daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in transplantation-ineligible patients with newly diagnosed multiple myeloma. Here, we report the updated efficacy and safety results from a prespecified interim analysis for overall survival. METHODS: MAIA is an ongoing, multicentre, randomised, open-label, phase 3 trial that enrolled patients at 176 hospitals in 14 countries across North America, Europe, the Middle East, and the Asia-Pacific region. Eligible patients were aged 18 years or older, had newly diagnosed multiple myeloma, had an Eastern Cooperative Oncology Group performance status score of 0-2, and were ineligible for high-dose chemotherapy with autologous stem-cell transplantation because of their age (≥65 years) or comorbidities. Patients were randomly assigned (1:1) using randomly permuted blocks (block size 4) by an interactive web response system to receive 28-day cycles of intravenous daratumumab (16 mg/kg, once per week during cycles 1-2, once every 2 weeks in cycles 3-6, and once every 4 weeks thereafter) plus oral lenalidomide (25 mg on days 1-21 of each cycle) and oral dexamethasone (40 mg on days 1, 8, 15, and 22 of each cycle; daratumumab group) or lenalidomide and dexamethasone alone (control group). Randomisation was stratified by International Staging System disease stage, geographical region, and age. Neither patients nor investigators were masked to treatment assignment. The primary endpoint was progression-free survival, which was centrally assessed, and a secondary endpoint was overall survival (both assessed in the intention-to-treat population). The safety population included patients who received at least one dose of the study treatment. The results presented here are from a prespecified interim analysis for overall survival, for which the prespecified stopping boundary was p=0·0414. This trial is registered with ClinicalTrials.gov, NCT02252172. FINDINGS: Between March 18, 2015, and Jan 15, 2017, 952 patients were assessed for eligibility, of whom 737 patients were enrolled and randomly assigned to the daratumumab group (n=368) or the control group (n=369). At a median follow-up of 56·2 months (IQR 52·7-59·9), median progression-free survival was not reached (95% CI 54·8-not reached) in the daratumumab group versus 34·4 months (29·6-39·2) in the control group (hazard ratio [HR] 0·53 [95% CI 0·43-0·66]; p<0·0001). Median overall survival was not reached in either group (daratumumab group, 95% CI not reached-not reached; control group, 95% CI 55·7-not reached; HR 0·68 [95% CI 0·53-0·86]; p=0·0013). The most common (>15%) grade 3 or higher treatment-emergent adverse events were neutropenia (197 [54%] patients in the daratumumab group vs 135 [37%] patients in the control group), pneumonia (70 [19%] vs 39 [11%]), anaemia (61 [17%] vs 79 [22%]), and lymphopenia (60 [16%] vs 41 [11%]). Serious adverse events occurred in 281 (77%) patients in the daratumumab group and 257 (70%) patients in the control group. Treatment-related deaths occurred in 13 (4%) patients in the daratumumab group and ten (3%) patients in the control group. INTERPRETATION: Daratumumab plus lenalidomide and dexamethasone increased overall survival and progression-free survival in patients ineligible for stem-cell transplantation with newly diagnosed multiple myeloma. There were no new safety concerns. Our results support the frontline use of daratumumab plus lenalidomide and dexamethasone for patients with multiple myeloma who are ineligible for transplantation. FUNDING: Janssen Research & Development.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Dexametasona/uso terapêutico , Lenalidomida/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/mortalidade , Idoso , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Feminino , Humanos , Masculino , Intervalo Livre de Progressão , Taxa de Sobrevida
15.
Hemasphere ; 5(10): e642, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34522844

RESUMO

In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1-2 section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including 11 sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European Hematology Research. the 11 EHA Research Roadmap sections include normal hematopoiesis; malignant lymphoid diseases; malignant myeloid diseases; anemias and related diseases; platelet disorders; blood coagulation and hemostatic disorders; transfusion medicine; infections in hematology; hematopoietic stem cell transplantation; CAR-T and Other cell-based immune therapies; and gene therapy.

16.
Nat Cell Biol ; 23(8): 834-845, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34354236

RESUMO

Pioneer transcription factors such as OCT4 can target silent genes embedded in nucleosome-dense regions. How nucleosome interaction enables transcription factors to target chromatin and determine cell identity remains elusive. Here, we systematically dissect OCT4 to show that nucleosome binding is encoded within the DNA-binding domain and yet can be uncoupled from free-DNA binding. Furthermore, accelerating the binding kinetics of OCT4 to DNA enhances nucleosome binding. In cells, uncoupling nucleosome binding diminishes the ability of OCT4 to individually access closed chromatin, while more dynamic nucleosome binding results in expansive genome scanning within closed chromatin. However, both uncoupling and enhancing nucleosome binding are detrimental to inducing pluripotency from differentiated cells. Remarkably, stable interactions between OCT4 and nucleosomes are continuously required for maintaining the accessibility of pluripotency enhancers in stem cells. Our findings reveal how the affinity and residence time of OCT4-nucleosome complexes modulate chromatin accessibility during cell fate changes and maintenance.


Assuntos
Nucleossomos/metabolismo , Fator 3 de Transcrição de Octâmero/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Sítios de Ligação/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Feminino , Fibroblastos , Biblioteca Gênica , Humanos , Camundongos , Modelos Moleculares , Mutação , Fator 3 de Transcrição de Octâmero/genética , Ligação Proteica , Fatores de Transcrição SOXB1/metabolismo
17.
Hemasphere ; 5(7): e596, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34131635

RESUMO

Chimeric antigen receptor (CAR) T cells are highly successful in the treatment of hematologic malignancies. We recently generated affinity-optimized CD38CAR T cells, which effectively eliminate multiple myeloma (MM) cells with little or no toxicities against nonmalignant hematopoietic cells. The lack of universal donors and long manufacturing times however limit the broad application of CAR T cell therapies. Natural killer (NK) cells generated from third party individuals may represent a viable source of "off the shelf" CAR-based products, as they are not associated with graft-versus-host disease unlike allogeneic T cells. We therefore explored the preclinical anti-MM efficacy and potential toxicity of the CD38CAR NK concept by expressing affinity-optimized CD38CARs in KHYG-1 cells, an immortal NK cell line with excellent expansion properties. KHYG-1 cells retrovirally transduced with the affinity-optimized CD38CARs expanded vigorously and mediated effective CD38-dependent cytotoxicity towards CD38high MM cell lines as well as primary MM cells ex vivo. Importantly, the intermediate affinity CD38CAR transduced KHYG-1 cells spared CD38neg or CD38int nonmalignant hematopoietic cells, indicating an optimal tumor nontumor discrimination. Irradiated, short living CD38CAR KHYG-1 cells also showed significant anti-MM effects in a xenograft model with a humanized bone marrow-like niche. Finally, CD38CAR KHYG-1 cells effectively eliminated primary MM cells derived from patients who are refractory to CD38 antibody daratumumab. Taken together, the results of this proof-of-principle study demonstrate the potential value of engineering affinity-optimized CD38CARs in NK cells to establish effective anti-MM effects, with an excellent safety profile, even in patients who failed to response to most advanced registered myeloma therapies, such as daratumumab.

18.
Blood ; 138(21): 2066-2092, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34111240

RESUMO

t(4;11) MLL-AF4 acute leukemia is one of the most aggressive malignancies in the infant and pediatric population, yet we have little information on the molecular mechanisms responsible for disease progression. This impairs the development of therapeutic regimens that can address the aggressive phenotype and lineage plasticity of MLL-AF4-driven leukemogenesis. This study highlights novel mechanisms of disease development by focusing on 2 microRNAs (miRNAs) upregulated in leukemic blasts from primary patient samples: miR-130b and miR-128a. We show that miR-130b and miR-128a are downstream targets of MLL-AF4 and can individually drive the transition from a pre-leukemic stage to an acute leukemia in an entirely murine Mll-AF4 in vivo model. They are also required to maintain the disease phenotype. Interestingly, miR-130b overexpression led to a mixed/B-cell precursor (BCP)/myeloid leukemia, propagated by the lymphoid-primed multipotent progenitor (LMPP) population, whereas miR-128a overexpression resulted in a pro-B acute lymphoblastic leukemia (ALL), maintained by a highly expanded Il7r+c-Kit+ blast population. Molecular and phenotypic changes induced by these two miRNAs fully recapitulate the human disease, including central nervous system infiltration and activation of an MLL-AF4 expression signature. Furthermore, we identified 2 downstream targets of these miRNAs, NR2F6 and SGMS1, which in extensive validation studies are confirmed as novel tumor suppressors of MLL-AF4+ leukemia. Our integrative approach thus provides a platform for the identification of essential co-drivers of MLL-rearranged leukemias, in which the preleukemia to leukemia transition and lineage plasticity can be dissected and new therapeutic approaches can be tested.


Assuntos
Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Masculino , Camundongos , Pré-Leucemia/genética , Fatores de Elongação da Transcrição/genética , Translocação Genética
19.
Hemasphere ; 5(5): e561, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33898931

RESUMO

We have recently shown the strong negative impact of multiple myeloma (MM)-bone marrow mesenchymal stromal cell (BMMSC) interactions to several immunotherapeutic strategies including conventional T cells, chimeric antigen receptor (CAR) T cells, and daratumumab-redirected NK cells. This BMMSC-mediated immune resistance via the upregulation of antiapoptotic proteins in MM cells was mainly observed for moderately cytotoxic modalities. Here, we set out to assess the hypothesis that this distinct mode of immune evasion can be overcome by improving the overall efficacy of immune effector cells. Using an in vitro model, we aimed to improve the cytotoxic potential of KHYG-1 NK cells toward MM cells by the introduction of a CD38-specific CAR and a DR5-specific, optimized TRAIL-variant. Similar to what have been observed for T cells and moderately lytic CAR T cells, the cytolytic efficacy of unmodified KHYG-1 cells as well as of conventional, DR5-agonistic antibodies were strongly reduced in the presence of BMMSCs. Consistent with our earlier findings, the BMMSCs protected MM cells against KHYG-1 and DR5-agonistic antibodies by inducing resistance mechanisms that were largely abrogated by the small molecule FL118, an inhibitor of multiple antiapoptotic proteins including Survivin, Mcl-1, and XIAP. Importantly, the BMMSC-mediated immune resistance was also significantly diminished by engineering KHYG-1 cells to express the CD38-CAR or the TRAIL-variant. These results emphasize the critical effects of microenvironment-mediated immune resistance on the efficacy of immunotherapy and underscores that this mode of immune escape can be tackled by inhibition of key antiapoptotic molecules or by increasing the overall efficacy of immune killer cells.

20.
Cancers (Basel) ; 13(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805422

RESUMO

Next-generation cellular immunotherapies seek to improve the safety and efficacy of approved CD19 chimeric antigen receptor (CAR) T-cell products or apply their principles across a growing list of targets and diseases. Supported by promising early clinical experiences, CAR modified natural killer (CAR-NK) cell therapies represent a complementary and potentially off-the-shelf, allogeneic solution. While acute myeloid leukemia (AML) represents an intuitive disease in which to investigate CAR based immunotherapies, key biological differences to B-cell malignancies have complicated progress to date. As CAR-T cell trials treating AML are growing in number, several CAR-NK cell approaches are also in development. In this review we explore why CAR-NK cell therapies may be particularly suited to the treatment of AML. First, we examine the established role NK cells play in AML biology and the existing anti-leukemic activity of NK cell adoptive transfer. Next, we appraise potential AML target antigens and consider common and unique challenges posed relative to treating B-cell malignancies. We summarize the current landscape of CAR-NK development in AML, and potential targets to augment CAR-NK cell therapies pharmacologically and through genetic engineering. Finally, we consider the broader landscape of competing immunotherapeutic approaches to AML treatment. In doing so we evaluate the innate potential, status and remaining barriers for CAR-NK based AML immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...