Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(1): 100899, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36652908

RESUMO

The non-canonical inflammasome sensor caspase-11 and gasdermin D (GSDMD) drive inflammation and pyroptosis, a type of immunogenic cell death that favors cell-mediated immunity (CMI) in cancer, infection, and autoimmunity. Here we show that caspase-11 and GSDMD are required for CD8+ and Th1 responses induced by nanoparticulate vaccine adjuvants. We demonstrate that nanoparticle-induced reactive oxygen species (ROS) are size dependent and essential for CMI, and we identify 50- to 60-nm nanoparticles as optimal inducers of ROS, GSDMD activation, and Th1 and CD8+ responses. We reveal a division of labor for IL-1 and IL-18, where IL-1 supports Th1 and IL-18 promotes CD8+ responses. Exploiting size as a key attribute, we demonstrate that biodegradable poly-lactic co-glycolic acid nanoparticles are potent CMI-inducing adjuvants. Our work implicates ROS and the non-canonical inflammasome in the mode of action of polymeric nanoparticulate adjuvants and establishes adjuvant size as a key design principle for vaccines against cancer and intracellular pathogens.


Assuntos
Inflamassomos , Nanopartículas , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Caspases/metabolismo , Interleucina-1/metabolismo
2.
Biomaterials ; 275: 120961, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34171753

RESUMO

Chitosan is a cationic polysaccharide that has been evaluated as an adjuvant due to its biocompatible and biodegradable nature. The polysaccharide can enhance antibody responses and cell-mediated immunity following vaccination by injection or mucosal routes. However, the optimal polymer characteristics for activation of dendritic cells (DCs) and induction of antigen-specific cellular immune responses have not been resolved. Here, we demonstrate that only chitin-derived polymers with a high degree of deacetylation (DDA) enhance generation of mitochondrial reactive oxygen species (mtROS), leading to cGAS-STING mediated induction of type I IFN. Additionally, the capacity of the polymers to activate the NLRP3 inflammasome was strictly dependent on the degree and pattern of deacetylation and mtROS generation. Polymers with a DDA below 80% are poor adjuvants while a fully deacetylated polyglucosamine polymer is most effective as a vaccine adjuvant. Furthermore, this polyglucosamine polymer enhanced antigen-specific Th1 responses in a NLRP3 and STING-type I IFN-dependent manner. Overall these results indicate that the degree of chitin deacetylation, the acetylation pattern and its regulation of mitochondrial ROS are the key determinants of its immune enhancing effects.


Assuntos
Inflamassomos , Proteínas de Membrana , Proteína 3 que Contém Domínio de Pirina da Família NLR , Quitina , Mitocôndrias , Nucleotidiltransferases , Polímeros , Espécies Reativas de Oxigênio
3.
J Immunol ; 202(4): 1145-1152, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642984

RESUMO

The cytokine IL-33 is a well-established inducer of Th2 responses. However, roles for IL-33 in promoting CD8, Th1, and T regulatory cell responses have also emerged. In this study, the role of IL-33 as a regulator of particulate vaccine adjuvant-induced Ag-specific cellular immunity was investigated. We found that polymeric nanoparticles surpassed alum in their ability to enhance Ag-specific CD8 and Th1 responses. IL-33 was a potent negative regulator of both CD8+ T cell and Th1 responses following i.m. vaccination with Ag and nanoparticles, whereas the cytokine was required for the nanoparticle enhancement in Ag-specific IL-10. In contrast to the effect on cellular immunity, Ab responses were comparable between vaccinated wild-type and IL-33-deficient mice. IL-33 did not compromise alum-induced adaptive cellular immunity after i.m. vaccination. These data suggest that IL-33 attenuates the induction of cellular immune responses by nanoparticulate adjuvants and should be considered in the rational design of vaccines targeting enhanced CD8 and Th1 responses.


Assuntos
Antígenos/imunologia , Imunidade Celular/imunologia , Interleucina-33/imunologia , Vacinas/imunologia , Animais , Antígenos/administração & dosagem , Injeções Intramusculares , Interleucina-33/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas/administração & dosagem , Nanopartículas/química , Vacinação , Vacinas/administração & dosagem
4.
Eur J Immunol ; 46(5): 1091-100, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27000936

RESUMO

Interleukin (IL)-33, a member of the IL-1 family, was originally described in 2005 as a potent initiator of type 2 immunity found during allergic inflammation and parasitic infections. IL-33 has been shown to play important and potent roles bridging innate and adaptive immunity in the regulation of tissue homeostasis, injury, and repair. Recent discoveries have extended the range of functions for IL-33 beyond type 2 conditions and its role as an alarmin at barrier sites, with emerging central roles for IL-33 in T-cell regulation, obesity, viral and tumor immunity. Here, we review the recent advances on how IL-33 activity is regulated, its immunomodulatory properties on innate and adaptive cells, and the newly discovered roles of IL-33 in obesity, intestinal inflammation, and tumorigenesis.


Assuntos
Imunidade Adaptativa , Alarminas/imunologia , Enterite/imunologia , Interleucina-33/imunologia , Neoplasias/imunologia , Obesidade/imunologia , Células Th2/imunologia , Animais , Citocinas/imunologia , Humanos , Imunidade Inata , Neoplasias/etiologia , Obesidade/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...