Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6289, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813852

RESUMO

European rivers are disconnected by more than one million man-made barriers that physically limit aquatic species migration and contribute to modification of freshwater habitats. Here, a Conceptual Habitat Alteration Model for Ponding is developed to aid in evaluating the effects of impoundments on fish habitats. Fish communities present in rivers with low human impact and their broad environmental settings enable classification of European rivers into 15 macrohabitat types. These classifications, together with the estimated fish sensitivity to alteration of their habitat are used for assessing the impacts of six main barrier types (dams, weirs, sluices, culverts, fords, and ramps). Our results indicate that over 200,000 km or 10% of previously free-flowing river habitat has been altered due to impoundments. Although they appear less frequently, dams, weirs and sluices cause much more habitat alteration than the other types. Their impact is regionally diverse, which is a function of barrier height, type and density, as well as biogeographical location. This work allows us to foresee what potential environmental gain or loss can be expected with planned barrier management actions in rivers, and to prioritize management actions.


Assuntos
Ecossistema , Rios , Humanos , Animais , Água Doce , Europa (Continente) , Modelos Teóricos , Peixes
2.
Sci Total Environ ; 628-629: 44-52, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29428859

RESUMO

Our study aimed to explore the effects of agriculture on the phosphorus buffer capacity of 11 headwater streams in Austria. We used phosphorus adsorption curves and re-suspension experiments to determine both, the potential of the sediments to act as phosphorus source or sink and the actual phosphorus exchange between water and sediments. Additionally, we determined the alkaline phosphatase activity (APA) in epilithic and epipsammic biofilms as indicator for the phosphorus demand of the benthic and hyporheic community. We hypothesized that highly polluted streams will show decreased phosphorus buffer capacities, which were either due to saturation or restricted water-sediment interactions. Our results support the second hypothesis. Fine sediment accumulations, organic matter content, and phosphorus concentrations in water and sediments increased with percent cropland in the catchment. Below SRP concentrations of 120µgL-1 in the stream water, sediments showed a high potential for phosphorus release, with zero equilibrium phosphorus concentrations (EPC0) being more than twice as high as SRP concentrations. Above 150µgL-1, EPC0 reached only 20-50% of SRP concentrations, indicating a high potential of the sediments to act as phosphorus sinks. These findings were confirmed by phosphorus uptake of these sediments during re-suspension. While APA in epilithic biofilms decreased with increasing SRP concentrations, APA in epipsammic biofilms showed the reverse pattern, indicating a restricted phosphorus supply of the hyporheic community despite phosphorus surplus in the water column. Our study shows that inputs of fine sediments from agricultural sources may reduce the phosphorus buffering mechanism of stream sediments through restrictions of water-sediment interactions. Consequently, water column and sediment processes are increasingly decoupled and phosphorus-rich stream water will not effectively reach the reactive sites in the sediments responsible for uptake. Therefore, phosphorus mitigation measures in stream ecosystems must comprise sediment management in the catchment as well as in-stream measures for the rehabilitation of the hyporheic zone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...