Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fertil Steril ; 110(2): 185-324.e5, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30053940

RESUMO

This monograph, written by the pioneers of IVF and reproductive medicine, celebrates the history, achievements, and medical advancements made over the last 40 years in this rapidly growing field.


Assuntos
Fertilização in vitro/história , Fertilização in vitro/tendências , Medicina Reprodutiva/história , Medicina Reprodutiva/tendências , Feminino , Fertilização in vitro/métodos , História do Século XX , História do Século XXI , Humanos , Recém-Nascido , Masculino , Indução da Ovulação/história , Indução da Ovulação/métodos , Indução da Ovulação/tendências , Gravidez , Medicina Reprodutiva/métodos
2.
J Biol Chem ; 293(10): 3829-3838, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29358330

RESUMO

Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis.


Assuntos
Blastocisto/metabolismo , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Herança Paterna , Ativação Transcricional , Animais , Blastocisto/citologia , Blastômeros/citologia , Blastômeros/metabolismo , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/antagonistas & inibidores , Histonas/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Mórula/citologia , Mórula/metabolismo , Fator 3 de Transcrição de Octâmero/química , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...