Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wellcome Open Res ; 6: 312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087955

RESUMO

Background: Chlamydia trachomatis is a prolific human pathogen that can cause serious long-term conditions if left untreated. Recent developments in Chlamydia genetics have opened the door to conducting targeted and random mutagenesis experiments to identify gene function. In the present study, an inducible transposon mutagenesis approach was developed for C. trachomatis using a self-replicating vector to deliver the transposon-transposase cassette - a significant step towards our ultimate aim of achieving saturation mutagenesis of the Chlamydia genome. Methods: The low transformation efficiency of C. trachomatis necessitated the design of a self-replicating vector carrying the transposon mutagenesis cassette (i.e. the Himar-1 transposon containing the beta lactamase gene as well as a hyperactive transposase gene under inducible control of the tet promoter system with the addition of a riboswitch). Chlamydia transformed with this vector (pSW2-RiboA-C9Q) were induced at 24 hours post-infection. Through dual control of transcription and translation, basal expression of transposase was tightly regulated to stabilise the plasmid prior to transposition. Results: Here we present the preliminary sequencing results of transposon mutant pools of both C. trachomatis biovars, using two plasmid-free representatives: urogenital strain   C. trachomatis SWFP- and the lymphogranuloma venereum isolate L2(25667R). DNA sequencing libraries were generated and analysed using Oxford Nanopore Technologies' MinION technology. This enabled 'proof of concept' for the methods as an initial low-throughput screen of mutant libraries; the next step is to employ high throughput sequencing to assess saturation mutagenesis. Conclusions: This significant advance provides an efficient method for assaying C. trachomatis gene function and will enable the identification of the essential gene set of C. trachomatis. In the long-term, the methods described herein will add to the growing knowledge of chlamydial infection biology leading to the discovery of novel drug or vaccine targets.

2.
PLoS One ; 15(5): e0233298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469898

RESUMO

BACKGROUND: Evolutionary studies have been conducted that have investigated the chromosomal variance in the genus of Chlamydia. However, no all-encompassing genus-wide comparison has been performed on the plasmid. Therefore, there is a gap in the current knowledge on Chlamydia plasmid diversity. AIMS: This project is aimed to investigate and establish the nature and extent of diversity across the entire genus of Chlamydia, by comparing the sequences of all currently available plasmid carrying strains. METHODS: The PUBMED database was used to identify plasmid sequences from all available strains that met the set quality criteria for their inclusion in the study. Alignments were performed on the 51 strains that fulfilled the criteria using MEGA X software. Following that Maximum Likelihood estimation was used to construct 11 phylogenetic trees of the whole plasmid sequence, the individual 8 coding sequences, the iteron and a chromosomal gene ompA as a comparator. RESULTS: The genus-wide plasmid phylogeny produced three distinct lineages labelled as alpha, beta and gamma. Nineteen genotypes were found in the initial whole plasmid analysis. Their distribution was allocated as six C. pecorum, two C. pneumoniae, one C. gallinacea, one C. avium, one C. caviae, one C. felis, two C. psittaci, one C. trachomatis, one C. muridarum, and two C. suis. The chromosomal comparative gene ompA supported this distribution, with the same number of primary clades with the same species distribution. However, ompA sequence comparison resulted in fewer genotypes due to a reduced amount of available sequences (33 out of 51). All results were statistically significant. CONCLUSION: The results of this study indicate that the common bacterial ancestor of all the species had a plasmid, which has diverged over time. Moreover, it suggests that there is a strong evolutionary selection towards these species retaining their plasmids due to its high level of conservation across the genus, with the notable exception of C. pneumoniae. Furthermore, the evolutionary analysis showed that the plasmid and the chromosome have co-evolved.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia/genética , Variação Genética , Plasmídeos/genética , Animais , Chlamydia/química , Genoma Bacteriano , Genótipo , Filogenia , Plasmídeos/química , Plasmídeos/classificação , Análise de Sequência de DNA
3.
Microorganisms ; 8(3)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155798

RESUMO

Chlamydia trachomatis is an obligate intracellular pathogen of humans, causing both the sexually transmitted infection, chlamydia, and the most common cause of infectious blindness, trachoma. The majority of sequenced C. trachomatis clinical isolates carry a 7.5-Kb plasmid, and it is becoming increasingly evident that this is a key determinant of pathogenicity. The discovery of the Swedish New Variant and the more recent Finnish variant highlight the importance of understanding the natural extent of variation in the plasmid. In this study we analysed 524 plasmid sequences from publicly available whole-genome sequence data. Single nucleotide polymorphisms (SNP) in each of the eight coding sequences (CDS) were identified and analysed. There were 224 base positions out of a total 7550 bp that carried a SNP, which equates to a SNP rate of 2.97%, nearly three times what was previously calculated. After normalising for CDS size, CDS8 had the highest SNP rate at 3.97% (i.e., number of SNPs per total number of nucleotides), whilst CDS6 had the lowest at 1.94%. CDS5 had the highest total number of SNPs across the 524 sequences analysed (2267 SNPs), whereas CDS6 had the least SNPs with only 85 SNPs. Calculation of the genetic distances identified CDS6 as the least variable gene at the nucleotide level (d = 0.001), and CDS5 as the most variable (d = 0.007); however, at the amino acid level CDS2 was the least variable (d = 0.001), whilst CDS5 remained the most variable (d = 0.013). This study describes the largest in-depth analysis of the C. trachomatis plasmid to date, through the analysis of plasmid sequence data mined from whole genome sequences spanning 50 years and from a worldwide distribution, providing insights into the nature and extent of existing variation within the plasmid as well as guidance for the design of future diagnostic assays. This is crucial at a time when single-target diagnostic assays are failing to detect natural mutants, putting those infected at risk of a serious long-term and life-changing illness.

4.
Sci Rep ; 9(1): 5847, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971744

RESUMO

Chlamydia trachomatis (Ct) is the leading cause of bacterial sexually transmitted infections worldwide and has been associated with male infertility. Recently, it was hypothesized that Ct may infect the epithelium of the seminiferous tubule, formed by Sertoli cells, thus leading to impaired spermatogenesis. To date, there is a lack of data on Ct infection of the seminiferous epithelium; therefore, we aimed to characterize, for the first time, an in vitro infection model of primary human Sertoli cells. We compared Ct inclusion size, morphology and growth kinetics with those in McCoy cells and we studied F-actin fibres, Vimentin-based intermediate filaments and α-tubulin microtubules in Sertoli and McCoy cells. Our main finding highlighted the ability of Ct to infect Sertoli cells, although with a unique growth profile and the inability to exit host cells. Furthermore, we observed alterations in the cytoskeletal fibres of infected Sertoli cells. Our results suggest that Ct struggles to generate a productive infection in Sertoli cells, limiting its dissemination in the host. Nevertheless, the adverse effect on the cytoskeleton supports the notion that Ct may compromise the blood-testis barrier, impairing spermatogenesis.


Assuntos
Citoesqueleto de Actina/metabolismo , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Filamentos Intermediários/metabolismo , Microtúbulos/metabolismo , Células de Sertoli/microbiologia , Actinas/metabolismo , Infecções por Chlamydia/complicações , Humanos , Infertilidade Masculina/etiologia , Masculino , Cultura Primária de Células , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
5.
Mol Cell Probes ; 29(2): 92-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25542839

RESUMO

Isothermal amplification is a rapid, simple alternative to PCR, with amplification commonly detected using fluorescently labelled oligonucleotide probes, intercalating dyes or increased turbidity as a result of magnesium pyrophosphate generation. SNP identification is possible but requires either allele-specific primers or multiple dye-labelled probes, but further downstream processing is often required for allelic identification. Here we demonstrate that modification of common isothermal amplification methods by the addition of HyBeacon probes permits homogeneous sequence detection and discrimination by melting or annealing curve analysis. Furthermore, we demonstrate that isothermal amplification and sequence discrimination is possible directly from a crude sample such as an expressed buccal swab.


Assuntos
Sondas Moleculares/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Chlamydia trachomatis/genética , Chlamydia trachomatis/isolamento & purificação , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Vitamina K Epóxido Redutases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...