Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 239(2): e14029, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37563989

RESUMO

AIM: Phosphorus is a critical constituent of bone as a component of hydroxyapatite. Bone mineral content accrues rapidly early in life necessitating a positive phosphorus balance, which could be established by a combination of increased renal reabsorption and intestinal absorption. Intestinal absorption can occur via a transcellular pathway mediated by the apical sodium-phosphate cotransporter, Slc34a2/NaPiIIb or via the paracellular pathway. We sought to determine how young mammals increase dietary phosphorus absorption from the small intestine to establish a positive phosphorus balance, a prerequisite for rapid bone growth. METHODS: The developmental expression profile of genes mediating phosphate absorption from the small intestine was determined in mice by qPCR and immunohistochemistry. Additionally, Ussing chamber studies were performed on small bowel of young (p7-p14) and older (8- to 17-week-old) mice to examine developmental changes in paracellular Pi permeability and transcellular Pi transport. RESULTS: Blood and urinary Pi levels were higher in young mice. Intestinal paracellular phosphate permeability of young mice was significantly increased relative to older mice across all intestinal segments. NaPiIIb expression was markedly increased in juvenile mice, in comparison to adult animals. Consistent with this, young mice had increased transcellular phosphate flux across the jejunum and ileum relative to older animals. Moreover, transcellular phosphate transport was attenuated by the NaPiIIb inhibitor NTX1942 in the jejunum and ileum of young mice. CONCLUSION: Our results are consistent with young mice increasing phosphate absorption via increasing paracellular permeability and the NaPiIIb-mediated transcellular pathway.

2.
Function (Oxf) ; 4(5): zqad033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575484

RESUMO

A higher concentration of calcium in breast milk than blood favors paracellular calcium absorption enabling growth during postnatal development. We aimed to determine whether suckling animals have greater intestinal calcium permeability to maximize absorption and to identify the underlying molecular mechanism. We examined intestinal claudin expression at different ages in mice and in human intestinal epithelial (Caco-2) cells in response to hormones or human milk. We also measured intestinal calcium permeability in wildtype, Cldn2 and Cldn12 KO mice and Caco-2 cells in response to hormones or human milk. Bone mineralization in mice was assessed by µCT. Calcium permeability across the jejunum and ileum of mice were 2-fold greater at 2 wk than 2 mo postnatal age. At 2 wk, Cldn2 and Cldn12 expression were greater, but only Cldn2 KO mice had decreased calcium permeability compared to wildtype. This translated to decreased bone volume, cross-sectional thickness, and tissue mineral density of femurs. Weaning from breast milk led to a 50% decrease in Cldn2 expression in the jejunum and ileum. Epidermal growth factor (EGF) in breast milk specifically increased only CLDN2 expression and calcium permeability in Caco-2 cells. These data support intestinal permeability to calcium, conferred by claudin-2, being greater in suckling mice and being driven by EGF in breast milk. Loss of the CLDN2 pathway leads to suboptimal bone mineralization at 2 wk of life. Overall, EGF-mediated control of intestinal claudin-2 expression contributes to maximal intestinal calcium absorption in suckling animals.


Assuntos
Claudina-2 , Fator de Crescimento Epidérmico , Humanos , Feminino , Animais , Camundongos , Claudina-2/metabolismo , Células CACO-2 , Estudos Transversais , Cálcio da Dieta/metabolismo , Permeabilidade
3.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810264

RESUMO

Calcium (Ca2+) homeostasis is maintained through coordination between intestinal absorption, renal reabsorption, and bone remodeling. Intestinal and renal (re)absorption occurs via transcellular and paracellular pathways. The latter contributes the bulk of (re)absorption under conditions of adequate intake. Epithelial paracellular permeability is conferred by tight-junction proteins called claudins. However, the molecular identity of the paracellular Ca2+ pore remains to be delineated. Claudins (Cldn)-2 and -12 confer Ca2+ permeability, but deletion of either claudin does not result in a negative Ca2+ balance or increased calciotropic hormone levels, suggesting the existence of additional transport pathways or parallel roles for the two claudins. To test this, we generated a Cldn2/12 double knockout mouse (DKO). These animals have reduced intestinal Ca2+ absorption. Colonic Ca2+ permeability is also reduced in DKO mice and significantly lower than single-null animals, while small intestine Ca2+ permeability is unaltered. The DKO mice display significantly greater urinary Ca2+ wasting than Cldn2 null animals. These perturbations lead to hypocalcemia and reduced bone mineral density, which was not observed in single-KO animals. Both claudins were localized to colonic epithelial crypts and renal proximal tubule cells, but they do not physically interact in vitro. Overexpression of either claudin increased Ca2+ permeability in cell models with endogenous expression of the other claudin. We find claudin-2 and claudin-12 form partially redundant, independent Ca2+ permeable pores in renal and colonic epithelia that enable paracellular Ca2+ (re)absorption in these segments, with either one sufficient to maintain Ca2+ balance.


Assuntos
Cálcio/metabolismo , Claudinas/genética , Hipocalcemia/metabolismo , Animais , Calcificação Fisiológica , Cátions , Genótipo , Células HEK293 , Homeostase , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Permeabilidade
4.
Am J Physiol Renal Physiol ; 317(2): F240-F253, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042050

RESUMO

To garner insights into the renal regulation of Ca2+ homeostasis, we performed an mRNA microarray on kidneys from mice treated with the Ca2+-sensing receptor (CaSR) agonist cinacalcet. This revealed decreased gene expression of Na+/H+ exchanger isoform 8 (NHE8) in response to CaSR activation. These results were confirmed by quantitative real-time PCR. Moreover, administration of vitamin D also decreased NHE8 mRNA expression. In contrast, renal NHE8 protein expression from the same samples was increased. To examine the role of NHE8 in transmembrane Ca2+ fluxes, we used the normal rat kidney (NRK) cell line. Cell surface biotinylation and confocal immunofluorescence microscopy demonstrated NHE8 apical expression. Functional experiments found 5-(N-ethyl-N-isopropyl)amiloride (EIPA)-inhibitable NHE activity in NRK cells at concentrations minimally attenuating NHE1 activity in AP-1 cells. To determine how NHE8 might regulate Ca2+ balance, we measured changes in intracellular Ca2+ uptake by live cell Ca2+ imaging with the fluorophore Fura-2 AM. Inhibition of NHE8 with EIPA or by removing extracellular Na+-enhanced Ca2+ influx into NRK cells. Ca2+ influx was mediated by a voltage-dependent Ca2+ channel rather than directly via NHE8. NRK cells express Cav1.3 and display verapamil-sensitive Ca2+ influx and NHE8 inhibition-augmented Ca2+ influx via a voltage-dependent Ca2+ channel. Finally, proximal tubules perused ex vivo demonstrated increased Ca2+ influx in the presence of luminal EIPA at a concentration that would inhibit NHE8. The results of the present study are consistent with NHE8 regulating Ca2+ uptake into the proximal tubule epithelium.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Células CHO , Calcimiméticos/farmacologia , Canais de Cálcio/metabolismo , Cinacalcete/farmacologia , Cricetulus , Células Epiteliais/efeitos dos fármacos , Homeostase , Túbulos Renais Proximais/efeitos dos fármacos , Mutação , Ratos , Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/metabolismo , Trocador 1 de Sódio-Hidrogênio/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/genética
5.
JCI Insight ; 52019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31013259

RESUMO

Plasma calcium (Ca2+) is maintained by amending the release of parathyroid hormone and through direct effects of the Ca2+ sensing receptor (CaSR) in the renal tubule. Combined, these mechanisms alter intestinal Ca2+ absorption by modulating 1,25-dihydroxy vitamin D3 production, bone resorption, and renal Ca2+ excretion. The CaSR is a therapeutic target in the treatment of secondary hyperparathyroidism and hypocalcemia a common complication of calcimimetic therapy. The CaSR is also expressed in intestinal epithelium, however, a direct role in regulating local intestinal Ca2+ absorption is unknown. Chronic CaSR activation decreased expression of genes involved in Ca2+ absorption. In Ussing chambers, increasing extracellular Ca2+ or basolateral application of the calcimimetic cinacalcet decreased net Ca2+ absorption across intestinal preparations acutely. Conversely, Ca2+ absorption increased with decreasing extracellular Ca2+ concentration. These responses were absent in mice expressing a non-functional TRPV6, TRPV6D541A. Cinacalcet also attenuated Ca2+ fluxes through TRPV6 in Xenopus oocytes when co-expressed with the CaSR. Moreover, the phospholipase C inhibitor, U73122, prevented cinacalcet-mediated inhibition of Ca2+ flux. These results reveal a regulatory pathway whereby activation of the CaSR in the basolateral membrane of the intestine directly attenuates local Ca2+ absorption via TRPV6 to prevent hypercalcemia and help explain how calcimimetics induce hypocalcemia.


Assuntos
Calcimiméticos/efeitos adversos , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/agonistas , Cálcio/sangue , Canais de Cálcio/genética , Cinacalcete/efeitos adversos , Modelos Animais de Doenças , Estrenos/farmacologia , Feminino , Técnicas de Introdução de Genes , Humanos , Hipercalcemia/induzido quimicamente , Hipercalcemia/prevenção & controle , Hiperparatireoidismo Secundário/induzido quimicamente , Hiperparatireoidismo Secundário/tratamento farmacológico , Hipocalcemia/induzido quimicamente , Hipocalcemia/tratamento farmacológico , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Oócitos , Hormônio Paratireóideo/metabolismo , Técnicas de Patch-Clamp , Inibidores de Fosfodiesterase/farmacologia , Pirrolidinonas/farmacologia , Receptores de Detecção de Cálcio/agonistas , Canais de Cátion TRPV/genética , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo , Xenopus
6.
Sci Transl Med ; 10(456)2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158152

RESUMO

Hyperphosphatemia is common in patients with chronic kidney disease and is increasingly associated with poor clinical outcomes. Current management of hyperphosphatemia with dietary restriction and oral phosphate binders often proves inadequate. Tenapanor, a minimally absorbed, small-molecule inhibitor of the sodium/hydrogen exchanger isoform 3 (NHE3), acts locally in the gastrointestinal tract to inhibit sodium absorption. Because tenapanor also reduces intestinal phosphate absorption, it may have potential as a therapy for hyperphosphatemia. We investigated the mechanism by which tenapanor reduces gastrointestinal phosphate uptake, using in vivo studies in rodents and translational experiments on human small intestinal stem cell-derived enteroid monolayers to model ion transport physiology. We found that tenapanor produces its effect by modulating tight junctions, which increases transepithelial electrical resistance (TEER) and reduces permeability to phosphate, reducing paracellular phosphate absorption. NHE3-deficient monolayers mimicked the phosphate phenotype of tenapanor treatment, and tenapanor did not affect TEER or phosphate flux in the absence of NHE3. Tenapanor also prevents active transcellular phosphate absorption compensation by decreasing the expression of NaPi2b, the major active intestinal phosphate transporter. In healthy human volunteers, tenapanor (15 mg, given twice daily for 4 days) increased stool phosphorus and decreased urinary phosphorus excretion. We determined that tenapanor reduces intestinal phosphate absorption predominantly through reduction of passive paracellular phosphate flux, an effect mediated exclusively via on-target NHE3 inhibition.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Isoquinolinas/farmacologia , Fosfatos/metabolismo , Trocador 3 de Sódio-Hidrogênio/antagonistas & inibidores , Sulfonamidas/farmacologia , Adulto , Idoso , Animais , Sequência de Bases , Células Cultivadas , Impedância Elétrica , Epitélio/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal/efeitos dos fármacos , Íons/urina , Masculino , Camundongos , Pessoa de Meia-Idade , Potássio/metabolismo , Prótons , Ratos , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Proteínas de Junções Íntimas/metabolismo , Adulto Jovem
7.
Methods Mol Biol ; 1713: 45-55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29218516

RESUMO

Xenopus laevis oocytes are a useful heterologous expression system for expressing glucose transporters (GLUTs) and examining their functions. In this chapter, we provide a detailed protocol on oocyte extraction and preparation for GLUT9 protein expression. Furthermore, we describe the determination of GLUT9 overexpression level by biotinylation and Western blotting analysis. Finally, we also describe how GLUT9-expressing oocytes can be used to measure urate kinetics by radioisotopes as well as two-microelectrode voltage clamping techniques.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Oócitos/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Animais , Expressão Gênica , Microeletrodos , Técnicas de Patch-Clamp , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Sci Rep ; 7: 41167, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117388

RESUMO

Human glucose transporter 9 (hSLC2A9) is critical in human urate homeostasis, for which very small deviations can lead to chronic or acute metabolic disorders. Human SLC2A9 is unique in that it transports hexoses as well as the organic anion, urate. This ability is in contrast to other homologous sugar transporters such as glucose transporters 1 and 5 (SLC2A1 &SLC2A5) and the xylose transporter (XylE), despite the fact that these transporters have similar protein structures. Our in silico substrate docking study has revealed that urate and fructose bind within the same binding pocket in hSLC2A9, yet with distinct orientations, and allowed us to identify novel residues for urate binding. Our functional studies confirmed that N429 is a key residue for both urate binding and transport. We have shown that cysteine residues, C181, C301 and C459 in hSLC2A9 are also essential elements for mediating urate transport. Additional data from chimæric protein analysis illustrated that transmembrane helix 7 of hSLC2A9 is necessary for urate transport but not sufficient to allow urate transport to be induced in glucose transporter 5 (hSLC2A5). These data indicate that urate transport in hSLC2A9 involves several structural elements rather than just a unique substrate binding pocket.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/química , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Ácido Úrico/química , Ácido Úrico/metabolismo , Animais , Cisteína/química , Cisteína/metabolismo , Frutose/química , Frutose/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Xenopus laevis
9.
J Biol Chem ; 290(24): 15292-303, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25922070

RESUMO

High blood urate levels (hyperuricemia) have been found to be a significant risk factor for cardiovascular diseases and inflammatory arthritis, such as hypertension and gout. Human glucose transporter 9 (hSLC2A9) is an essential protein that mainly regulates urate/hexose homeostasis in human kidney and liver. hSLC2A9 is a high affinity-low capacity hexose transporter and a high capacity urate transporter. Our previous studies identified a single hydrophobic residue in trans-membrane domain 7 of class II glucose transporters as a determinant of fructose transport. A mutation of isoleucine 335 to valine (I355V) in hSLC2A9 can reduce fructose transport while not affecting glucose fluxes. This current study demonstrates that the I335V mutant transports urate similarly to the wild type hSLC2A9; however, Ile-335 is necessary for urate/fructose trans-acceleration exchange to occur. Furthermore, Trp-110 is a critical site for urate transport. Two structural models of the class II glucose transporters, hSLC2A9 and hSLC2A5, based on the crystal structure of hSLC2A1 (GLUT1), reveal that Ile-335 (or the homologous Ile-296 in hSLC2A5) is a key component for protein conformational changes when the protein translocates substrates. The hSLC2A9 model also predicted that Trp-110 is a crucial site that could directly interact with urate during transport. Together, these studies confirm that hSLC2A9 transports both urate and fructose, but it interacts with them in different ways. Therefore, this study advances our understanding of how hSLC2A9 mediates urate and fructose transport, providing further information for developing pharmacological agents to treat hyperuricemia and related diseases, such as gout, hypertension, and diabetes.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Isoleucina/metabolismo , Triptofano/metabolismo , Ácido Úrico/metabolismo , Animais , Sequência de Bases , Transporte Biológico , Primers do DNA , Feminino , Proteínas Facilitadoras de Transporte de Glucose/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Especificidade por Substrato , Xenopus laevis
10.
Am J Physiol Renal Physiol ; 303(4): F527-39, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22647630

RESUMO

Human SLC2A9 (GLUT9) is a novel high-capacity urate transporter belonging to the facilitated glucose transporter family. In the present study, heterologous expression in Xenopus oocytes has allowed us to undertake an in-depth radiotracer flux and electrophysiological study of urate transport mediated by both isoforms of SLC2A9 (a and b). Addition of urate to SLC2A9-producing oocytes generated outward currents, indicating electrogenic transport. Urate transport by SLC2A9 was voltage dependent and independent of the Na(+) transmembrane gradient. Urate-induced outward currents were affected by the extracellular concentration of Cl(-), but there was no evidence for exchange of the two anions. [(14)C]urate flux studies under non-voltage-clamped conditions demonstrated symmetry of influx and efflux, suggesting that SLC2A9 functions in urate efflux driven primarily by the electrochemical gradient of the cell. Urate uptake in the presence of intracellular hexoses showed marked differences between the two isoforms, suggesting functional differences between the two splice variants. Finally, the permeant selectivity of SLC2A9 was examined by testing the ability to transport a panel of radiolabeled purine and pyrimidine nucleobases. SLC2A9 mediated the uptake of adenine in addition to urate, but did not function as a generalized nucleobase transporter. The differential expression pattern of the two isoforms of SLC2A9 in the human kidney's proximal convoluted tubule and its electrogenic transport of urate suggest that these transporters play key roles in the regulation of plasma urate levels and are therefore potentially important participants in hyperuricemia and hypouricemia.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hexoses/metabolismo , Ácido Úrico/metabolismo , Animais , Transporte Biológico , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica/fisiologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Ativação do Canal Iônico , Oócitos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Xenopus laevis
11.
Curr Protoc Cell Biol ; Chapter 3: Unit 3.21, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18228489

RESUMO

This unit provides protocols for isolating intestinal brush-border membranes from rat, pig, and cow. These membranes can be used for immunoblotting or other analytical techniques. They will also spontaneously form closed vesicles which allow for flux assays to be performed using rapid filtration techniques. Overall the isolation procedures take approximately 3.5 hr. The resulting isolated membranes can be stored under liquid nitrogen or at -70 degrees C for a week or more depending upon the species.


Assuntos
Mucosa Intestinal/ultraestrutura , Animais , Bovinos , Microvilosidades/ultraestrutura , Ratos , Ratos Sprague-Dawley , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...