Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(2): 102875, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621626

RESUMO

Aurora kinases (AURKs) are mitotic kinases important for regulating cell cycle progression. Small-molecule inhibitors of AURK have shown promising antitumor effects in multiple cancers; however, the utility of these inhibitors as inducers of cancer cell death has thus far been limited. Here, we examined the role of the Bcl-2 family proteins in AURK inhibition-induced apoptosis in colon cancer cells. We found that alisertib and danusertib, two small-molecule inhibitors of AURK, are inefficient inducers of apoptosis in HCT116 and DLD-1 colon cancer cells, the survival of which requires at least one of the two antiapoptotic Bcl-2 family proteins, Bcl-xL and Mcl-1. We further identified Bcl-xL as a major suppressor of alisertib- or danusertib-induced apoptosis in HCT116 cells. We demonstrate that combination of a Bcl-2 homology (BH)3-mimetic inhibitor (ABT-737), a selective inhibitor of Bcl-xL, Bcl-2, and Bcl-w, with alisertib or danusertib potently induces apoptosis through the Bcl-2 family effector protein Bax. In addition, we identified Bid, Puma, and Noxa, three BH3-only proteins of the Bcl-2 family, as mediators of alisertib-ABT-737-induced apoptosis. We show while Noxa promotes apoptosis by constitutively sequestering Mcl-1, Puma becomes associated with Mcl-1 upon alisertib treatment. On the other hand, we found that alisertib treatment causes activation of caspase-2, which promotes apoptosis by cleaving Bid into truncated Bid, a suppressor of both Bcl-xL and Mcl-1. Together, these results define the Bcl-2 protein network critically involved in AURK inhibitor-induced apoptosis and suggest that BH3-mimetics targeting Bcl-xL may help overcome resistance to AURK inhibitors in cancer cells.


Assuntos
Antineoplásicos , Apoptose , Aurora Quinases , Proteína bcl-X , Humanos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Aurora Quinases/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/fisiopatologia , Ativação Enzimática/efeitos dos fármacos , Células HCT116 , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
2.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-32802314

RESUMO

Bax and Bak, two functionally similar, pro-apoptotic proteins of the Bcl-2 family, are known as the gateway to apoptosis because of their requisite roles as effectors of mitochondrial outer membrane permeabilization (MOMP), a major step during mitochondria-dependent apoptosis. The mechanism of how cells turn Bax/Bak from inert molecules into fully active and lethal effectors had long been the focal point of a major debate centered around two competing, but not mutually exclusive, models: direct activation and indirect activation. After intensive research efforts for over two decades, it is now widely accepted that to initiate apoptosis, some of the BH3-only proteins, a subclass of the Bcl-2 family, directly engage Bax/Bak to trigger their conformational transformation and activation. However, a series of recent discoveries, using previously unavailable CRISPR-engineered cell systems, challenge the basic premise that undergirds the consensus and provide evidence for a novel and surprisingly simple model of Bax/Bak activation: the membrane (lipids)-mediated spontaneous model. This review will discuss the evidence, rationale, significance, and implications of this new model.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/fisiologia , Proteína X Associada a bcl-2/fisiologia , Apoptose , Humanos
3.
Cell Death Differ ; 27(8): 2297-2312, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32015503

RESUMO

Cells experiencing delays in mitotic progression are prone to undergo apoptosis unless they can exit mitosis before proapoptotic factors reach a critical threshold. Microtubule targeting agents (MTAs) arrest cells in mitosis and induce apoptotic cell death engaging the BCL2 network. Degradation of the antiapoptotic BCL2 family member MCL-1 is considered to set the time until onset of apoptosis upon MTA treatment. MCL1 degradation involves its interaction with one of its key binding partners, the proapoptotic BH3-only protein NOXA. Here, we report that the mitochondria-associated E3-ligase MARCH5, best known for its role in mitochondrial quality control and regulation of components of the mitochondrial fission machinery, controls the levels of MCL1/NOXA protein complexes in steady state as well as during mitotic arrest. Inhibition of MARCH5 function sensitizes cancer cells to the proapoptotic effects of MTAs by the accumulation of NOXA and primes cancer cells that may undergo slippage to escape death in mitosis to cell death in the next G1 phase. We propose that inhibition of MARCH5 may be a suitable strategy to sensitize cancer cells to antimitotic drug treatment.


Assuntos
Antimitóticos/farmacologia , Proteínas de Membrana/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
4.
Cell Res ; 29(11): 942-952, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31551537

RESUMO

It has been widely accepted that mitochondria-dependent apoptosis initiates when select BH3-only proteins (BID, BIM, etc.) directly engage and allosterically activate effector proteins BAX/BAK. Here, through reconstitution of cells lacking all eight pro-apoptotic BH3-only proteins, we demonstrate that all BH3-only proteins primarily target the anti-apoptotic BCL-2 proteins BCL-xL/MCL-1, whose simultaneous suppression enables membrane-mediated spontaneous activation of BAX/BAK. BH3-only proteins' apoptotic activities correlate with affinities for BCL-xL/MCL-1 instead of abilities to directly activate BAX/BAK. Further, BID and BIM do not distinguish BAX from BAK or accelerate BAX/BAK activation following inactivation of BCL-xL/MCL-1. Remarkably, death ligand-induced apoptosis in cells lacking BH3-only proteins and MCL-1 is fully restored by BID mutants capable of neutralizing BCL-xL, but not direct activation of BAX/BAK. Taken together, our findings provide a "Membrane-mediated Permissive" model, in which the BH3-only proteins only indirectly activate BAX/BAK by neutralizing the anti-apoptotic BCL-2 proteins, and thus allowing BAX/BAK to undergo unimpeded, spontaneous activation in the mitochondrial outer membrane milieu, leading to apoptosis initiation.


Assuntos
Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/fisiologia , Proteína 11 Semelhante a Bcl-2/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Células HCT116 , Células HEK293 , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/metabolismo
5.
Mol Biol Cell ; 30(10): 1138-1146, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30840537

RESUMO

The anti-apoptotic Bcl-2 family protein Bcl-xL plays a critical role in cell survival by protecting the integrity of the mitochondrial outer membrane (MOM). The mechanism through which Bcl-xL is recruited to the MOM has not been fully discerned. The retromer is a conserved endosomal scaffold complex involved in membrane trafficking. Here we identify VPS35 and VPS26, two core components of the retromer, as novel regulators of Bcl-xL. We observed interactions and colocalization between Bcl-xL, VPS35, VPS26, and MICAL-L1, a protein involved in recycling endosome biogenesis that also interacts with the retromer. We also found that upon VPS35 depletion, levels of nonmitochondrial Bcl-xL were increased. In addition, retromer-depleted cells displayed more rapid Bax activation and apoptosis. These results suggest that the retromer regulates apoptosis by facilitating Bcl-xL's transport to the MOM. Importantly, our studies suggest a previously uncharacterized relationship between the machineries of cell death/survival and endosomal trafficking.


Assuntos
Membranas Mitocondriais/metabolismo , Proteína bcl-X/metabolismo , Apoptose/fisiologia , Endossomos/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
J Biol Chem ; 291(22): 11843-51, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27053107

RESUMO

The BH3-only protein Bid is known as a critical mediator of the mitochondrial pathway of apoptosis following death receptor activation. However, since full-length Bid possesses potent apoptotic activity, the role of a caspase-mediated Bid cleavage is not established in vivo In addition, due to the fact that multiple caspases cleave Bid at the same site in vitro, the identity of the Bid-cleaving caspase during death receptor signaling remains uncertain. Moreover, as Bid maintains its overall structure following its cleavage by caspase 8, it remains unclear how Bid is activated upon cleavage. Here, Bid-deficient (Bid KO) colon cancer cells were generated by gene editing, and were reconstituted with wild-type or mutants of Bid. While the loss of Bid blocked apoptosis following treatment by TNF-related apoptosis inducing ligand (TRAIL), this blockade was relieved by re-introduction of the wild-type Bid. In contrast, the caspase-resistant mutant Bid(D60E) and a BH3 defective mutant Bid(G94E) failed to restore TRAIL-induced apoptosis. By generating Bid/Bax/Bak-deficient (TKO) cells, we demonstrated that Bid is primarily cleaved by caspase 8, not by effector caspases, to give rise to truncated Bid (tBid) upon TRAIL treatment. Importantly, despite the presence of an intact BH3 domain, a tBid mutant lacking the mitochondrial targeting helices (α6 and α7) showed diminished apoptotic activity. Together, these results for the first time establish that cleavage by caspase 8 and the subsequent association with the outer mitochondrial membrane are two critical events that activate Bid during death receptor-mediated apoptosis.


Assuntos
Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 8/metabolismo , Neoplasias do Colo/patologia , Membranas Mitocondriais/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Sequência de Bases , Western Blotting , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Homologia de Sequência do Ácido Nucleico , Ligante Indutor de Apoptose Relacionado a TNF/genética , Células Tumorais Cultivadas , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
7.
Genes Dev ; 30(8): 973-88, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27056669

RESUMO

The mechanism of Bax/Bak activation remains a central question in mitochondria-dependent apoptotic signaling. While it is established that all proapoptotic Bcl-2 homology 3 (BH3)-only proteins bind and neutralize the anti-apoptotic Bcl-2 family proteins, how this neutralization leads to Bax/Bak activation has been actively debated. Here, genome editing was used to generate cells deficient for all eight proapoptotic BH3-only proteins (OctaKO) and those that lack the entire Bcl-2 family (Bcl-2 allKO). Although the OctaKO cells were resistant to most apoptotic stimuli tested, they underwent Bax/Bak-dependent and p53/Rb-independent apoptosis efficiently when both Bcl-xL and Mcl-1, two anti-apoptotic Bcl-2 proteins, were inactivated or eliminated. Strikingly, when expressed in the Bcl-2 allKO cells, both Bax and Bak spontaneously associated with the outer mitochondrial membrane (OMM) through their respective helix 9, and this association triggered their homo-oligomerization/activation. Together, these results strongly suggest that the OMM, not BH3-only proteins or p53/Rb, is the long-sought-after direct activator of Bax/Bak following BH3-only-mediated neutralization of anti-apoptotic Bcl-2 proteins.


Assuntos
Apoptose/genética , Membranas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica/genética , Inativação Gênica , Células HCT116 , Células HeLa , Humanos , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo
8.
J Biol Chem ; 289(25): 17802-11, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24811167

RESUMO

The BH3-only protein Noxa is a critical mediator of apoptosis and functions primarily by sequestering/inactivating the antiapoptotic Bcl-2 family protein Mcl-1. Although Noxa is a highly labile protein, recent studies suggested that it is degraded by the proteasome in a ubiquitylation-independent manner. In the present study, we investigated the mechanism of Noxa degradation and its ability to regulate the stability of Mcl-1. We found that the ubiquitylation-independent degradation of Noxa does not require a physical association with Mcl-1. A short stretch of amino acid residues in the C-terminal tail was found to mediate the proteasome-dependent degradation of Noxa. Ectopic placement of this degron was able to render other proteins unstable. Surprisingly, mutation of this sequence not only attenuated the rapid degradation of Noxa, but also stabilized endogenous Mcl-1 through the BH3-mediated direct interaction. Together, these results suggest that the C-terminal tail of Noxa regulates the stability of both Noxa and Mcl-1.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células HeLa , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...