Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Atmos ; 123(10): 5560-5587, 2018 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32661496

RESUMO

Analysis of sun photometer measured and satellite retrieved aerosol optical depth (AOD) data has shown that major aerosol pollution events with very high fine mode AOD (>1.0 in mid-visible) in the China/Korea/Japan region are often observed to be associated with significant cloud cover. This makes remote sensing of these events difficult even for high temporal resolution sun photometer measurements. Possible physical mechanisms for these events that have high AOD include a combination of aerosol humidification, cloud processing, and meteorological co-variation with atmospheric stability and convergence. The new development of Aerosol Robotic network (AERONET) Version 3 Level 2 AOD with improved cloud screening algorithms now allow for unprecedented ability to monitor these extreme fine mode pollution events. Further, the Spectral Deconvolution Algorithm (SDA) applied to Level 1 data (L1; no cloud screening) provides an even more comprehensive assessment of fine mode AOD than L2 in current and previous data versions. Studying the 2012 winter-summer period, comparisons of AERONET L1 SDA daily average fine mode AOD data showed that Moderate Resolution Imaging Spectroradiometer (MODIS) satellite remote sensing of AOD often did not retrieve and/or identify some of the highest fine mode AOD events in this region. Also, compared to models that include data assimilation of satellite retrieved AOD, the L1 SDA fine mode AOD was significantly higher in magnitude, particularly for the highest AOD events that were often associated with significant cloudiness.

2.
J Clin Virol ; 47(3): 219-23, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20106717

RESUMO

BACKGROUND: Human rhinoviruses (HRVs) are associated with more acute respiratory tract infections than any other viral group yet we know little about viral diversity, epidemiology or clinical outcome resulting from infection by strains, in particular the recently identified HRVs. OBJECTIVES: To determine whether HRVC-QCE was a distinct HRV-C strain, by determining its genome and prevalence, by cataloguing genomic features for strain discrimination and by observing clinical features in positive patients. STUDY DESIGN: Novel real-time RT-PCRs and retrospective chart reviews were used to investigate a well-defined population of 1247 specimen extracts to observe the prevalence and the clinical features of each HRV-QCE positive case from an in- and out-patient pediatric, hospital-based population during 2003. An objective illness severity score was determined for each HRVC-QCE positive patient. RESULTS: Differences in overall polyprotein and VP1 binding pocket residues and the predicted presence of a cis-acting replication element in 1B defined HRVC-QCE as a novel HRV-C strain. Twelve additional HRVC-QCE detections (1.0% prevalence) occurred among infants and toddlers (1-24 months) suffering mild to moderate illness, including fever and cough, who were often hospitalized. HRVC-QCE was frequently detected in the absence of another virus and was the only virus detected in three (23% of HRVC-QCE positives) children with asthma exacerbation and in two (15%) toddlers with febrile convulsion. CONCLUSIONS: HRVC-QCE is a newly identified, genetically distinct HRV strain detected in hospitalized children with a range of clinical features. HRV strains should be independently considered to ensure we do not overestimate the HRVs in asymptomatic illness.


Assuntos
Infecções por Picornaviridae/virologia , RNA Viral/genética , Infecções Respiratórias/virologia , Rhinovirus/classificação , Rhinovirus/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Criança , Pré-Escolar , Análise por Conglomerados , Tosse/etiologia , Feminino , Febre/etiologia , Genótipo , Hospitalização , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Dados de Sequência Molecular , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/patologia , Prevalência , Sons Respiratórios/etiologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência , Adulto Jovem
3.
Appl Opt ; 40(15): 2368-75, 2001 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18357245

RESUMO

The classical Angström exponent is an operationally robust optical parameter that contains size information on all optically active aerosols in the field of view of a sunphotometer. Assuming that the optical effects of a typical (radius) size distribution can be approximated by separate submicrometer and supermicrometer components, we show that one can exploit the spectral curvature information in the measured optical depth to permit a direct estimation of a fine-mode (submicrometer) Angström exponent (alpha(f)) as well as the optical fraction of fine-mode particles (eta). Simple expressions that enable the estimation of these parameters are presented and tested by use of simulations and measurements.

4.
Appl Opt ; 38(36): 7305-20, 1999 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18324279

RESUMO

Ground-based sunphotometer observation of direct and scattered solar radiation is a traditional tool for providing data on aerosol optical properties. Spectral transmission and solar aureole measurements provide an optical source of aerosol information, which can be inverted for retrieval of microphysical properties (particle size distribution and refractive index). However, to infer these aerosol properties from ground-based remote-sensing measurements, special numerical inversion methods should be developed and applied. We propose two improvements to the existing inversion techniques employed to derive aerosol microphysical properties from combined atmospheric transmission and solar aureole measurements. First, the aerosol refractive index is directly included in the inversion procedure and is retrieved simultaneously with the particle size spectra. Second, we allow for real or effective instrumental pointing errors by including a correction factor for scattering angle errors as a retrieved inversion parameter. The inversion technique is validated by numerical simulations and applied to field data. It is shown that ground-based sunphotometer measurements enable one to derive the real part of the aerosol refractive index with an absolute error of 0.03-0.05 and to distinguish roughly between weakly and strongly absorbing aerosols. The aureole angular observation scheme can be refined with an absolute accuracy of 0.15-0.19 deg. Offset corrections to the scattering angle error are generally found to be small and consistently of the order of -0.17. This error magnitude is deduced to be due primarily to nonlinear field-of-view averaging effects rather than to instrumental errors.

5.
Appl Opt ; 36(3): 662-74, 1997 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-18250725

RESUMO

Methodologies that employ auxilliary flux data collected by upward- and downward-looking optical sensors to improve atmospheric corrections of airborne multispectral images are presented and evaluated. Such flux data often are collected in current airborne sensors to produce bidirectional reflectance factor (BRF) images and estimates of hemispherical-hemispherical reflectance. The fact that these images must then be corrected for atmospheric interference raises the question as to whether the auxilliary flux information can be employed to estimate some of the input parameters required by atmospheric correction models. Radiative transfer simulations are employed to demonstrate that the utilization of the downwelling and upwelling fluxes as a means of inferring intrinsic atmospheric optical information can be used to better characterize the local atmosphere and accordingly to improve the atmospheric corrections applied to the apparent BRF images.

6.
Appl Opt ; 28(15): 3092-8, 1989 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20555656

RESUMO

The atmospheric optical depth serves as an input parameter to atmospheric correction procedures in remote sensing and as an index of atmospheric opacity or constituent columnar abundance for meteorological applications. Its measurement, typically performed by means of a small field of view radiometer centered on the solar disk, is sensitive to the absolute calibration accuracy of the instrument. In this paper a simple technique is presented which permits the extraction of aerosol optical depth from the ratio of total to direct irradiance measurements. An error analysis performed on the results of radiative transfer simulations and field measurements indicates that the technique generates values of aerosol optical depth which are sufficiently accurate for many applications. This method thus represents a useful alternative to standard sunphotometer measurements.

9.
Appl Opt ; 21(7): 1231-5, 1982 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20389837

RESUMO

A methodology for investigating the variation of particle size distributions retrieved from constrained linear inversion of optical scattering data is presented. By plotting the expected inversion error vs angular scanning parameters (for typical size distribution vectors) one can determine sets of optimum angles based on a minimum error criteria at each particle size. An expression for the expected inversion error at each radius knot is derived. In addition a formulation for the Fredholm quadrature matrix in terms of Legendre coefficients and polynomials is introduced. This method of computation is advantageous when a large number of angles are to be investigated. The derived results are applied to the special case of a Junge Continental Aerosol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...