Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36678490

RESUMO

Ginger (Zingiber officinale Roscoe) is an important horticultural crop, valued for its culinary and medicinal properties. Fusarium yellows of ginger, caused by Fusarium oxysporum f. sp. zingiberi (Foz), is a devastating disease that has significantly reduced the quality and crop yield of ginger worldwide. The compatible interaction between ginger and Foz leading to susceptibility is dissected here. The pathogenicity of two Foz isolates on ginger was confirmed by their ability to colonise ginger and in turn induce both internal and external plant symptoms typical of Fusarium yellows. To shed light on Foz susceptibility at the molecular level, a set of defense-responsive genes was analysed for expression in the roots of ginger cultivars challenged with Foz. These include nucleotide-binding site (NBS) type of resistant (R) genes with a functional role in pathogen recognition, transcription factors associated with systemic acquired resistance, and enzymes involved in terpenoid biosynthesis and cell wall modifications. Among three R genes, the transcripts of ZoNBS1 and ZoNBS3 were rapidly induced by Foz at the onset of infection, and the expression magnitude was cultivar-dependent. These expression characteristics extend to the other genes. This study is the first step in understanding the mechanisms of compatible host-pathogen interactions in ginger.

2.
Microorganisms ; 10(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35208723

RESUMO

Fusarium oxysporum f. sp. cubense (Foc) is a soil-borne fungus that causes Fusarium wilt, a destructive plant disease that has resulted in devastating economic losses to banana production worldwide. The fungus has a complex evolutionary history and taxonomic repute and consists of three pathogenic races and at least 24 vegetative compatibility groups (VCGs). Surveys conducted in Asia, Africa, the Sultanate of Oman and Mauritius encountered isolates of F. oxysporum pathogenic to banana that were not compatible to any of the known Foc VCGs. Genetic relatedness between the undescribed and known Foc VCGs were determined using a multi-gene phylogeny and diversity array technology (DArT) sequencing. The presence of putative effector genes, the secreted in xylem (SIX) genes, were also determined. Fourteen novel Foc VCGs and 17 single-member VCGs were identified. The multi-gene tree was congruent with the DArT-seq phylogeny and divided the novel VCGs into three clades. Clustering analysis of the DArT-seq data supported the separation of Foc isolates into eight distinct clusters, with the suite of SIX genes mostly conserved within these clusters. Results from this study indicates that Foc is more diverse than hitherto assumed.

3.
Front Plant Sci ; 10: 1395, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921221

RESUMO

Fusarium wilt of banana (also known as Panama disease) has been a problem in Australia since 1874. Race 1 of the pathogen (Fusarium oxysporum f. sp. cubense) is responsible for damage to 'Lady Finger' (AAB, Pome subgroup) and other less widely grown cultivars such as 'Ducasse' (Pisang Awak, ABB). Subtropical Race 4 (STR4) also affects these cultivars as well as Cavendish cultivars (AAA) in southern Queensland and northern New South Wales where cold temperature predisposition is involved. Tropical Race 4 (TR4) has led to the demise of the Cavendish industry in the Northern Territory, and its presence was confirmed in a North Queensland plantation in 2015, which warranted destruction of all banana plants on the property; as of this writing (April 2019), TR4 has spread to two adjacent properties. This review, which was commissioned by Biosecurity Queensland in response to the 2015 TR4 outbreak, considers the key epidemiological factors associated with the onset of a Fusarium wilt epidemic. Resistance to TR4, which is mediated by events following entry by the pathogen into the xylem, is not present in any commercially acceptable banana cultivar. Also, there is no effective chemical agent that can be used to manage the disease. Besides prevention, very early recognition and rapid containment of a disease outbreak are necessary to prevent epidemic development. A good understanding of the key factors responsible for disease development is required when devising practical protocols for the destruction of infected plants, treatment of surrounding infested soil, and reduction of inoculum in plant residues and soil.

4.
Mol Plant Pathol ; 19(5): 1155-1171, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28802020

RESUMO

It is hypothesized that the virulence of phytopathogenic fungi is mediated through the secretion of small effector proteins that interfere with the defence responses of the host plant. In Fusarium oxysporum, one family of effectors, the Secreted In Xylem (SIX) genes, has been identified. We sought to characterize the diversity and evolution of the SIX genes in the banana-infecting lineages of F. oxysporum f. sp. cubense (Foc). Whole-genome sequencing data were generated for the 23 genetic lineages of Foc, which were subsequently queried for the 14 known SIX genes (SIX1-SIX14). The sequences of the identified SIX genes were confirmed in a larger collection of Foc isolates. Genealogies were generated for each of the SIX genes identified in Foc to further investigate the evolution of the SIX genes in Foc. Within Foc, variation of the SIX gene profile, including the presence of specific SIX homologues, correlated with the pathogenic race structure of Foc. Furthermore, the topologies of the SIX gene trees were discordant with the topology of an infraspecies phylogeny inferred from EF-1α/RPB1/RPB2 (translation elongation factor-1α/RNA polymerase II subunit I/RNA polymerase II subunit II). A series of topological constraint models provided strong evidence for the horizontal transmission of SIX genes in Foc. The horizontal inheritance of pathogenicity genes in Foc counters previous assumptions that convergent evolution has driven the polyphyletic phylogeny of Foc. This work has significant implications for the management of Foc, including the improvement of diagnostics and breeding programmes.


Assuntos
Fusarium/genética , Transferência Genética Horizontal , Genes Fúngicos , Variação Genética , Musa/microbiologia , Sequência de Bases , Evolução Molecular , Genes Essenciais , Padrões de Herança/genética , Funções Verossimilhança , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...