Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 15(11): 1549-1558, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37723259

RESUMO

Understanding and controlling protein motion at atomic resolution is a hallmark challenge for structural biologists and protein engineers because conformational dynamics are essential for complex functions such as enzyme catalysis and allosteric regulation. Time-resolved crystallography offers a window into protein motions, yet without a universal perturbation to initiate conformational changes the method has been limited in scope. Here we couple a solvent-based temperature jump with time-resolved crystallography to visualize structural motions in lysozyme, a dynamic enzyme. We observed widespread atomic vibrations on the nanosecond timescale, which evolve on the submillisecond timescale into localized structural fluctuations that are coupled to the active site. An orthogonal perturbation to the enzyme, inhibitor binding, altered these dynamics by blocking key motions that allow energy to dissipate from vibrations into functional movements linked to the catalytic cycle. Because temperature jump is a universal method for perturbing molecular motion, the method demonstrated here is broadly applicable for studying protein dynamics.


Assuntos
Proteínas , Cristalografia por Raios X , Modelos Moleculares , Temperatura , Proteínas/química , Conformação Molecular , Conformação Proteica
2.
Sci Adv ; 7(34)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34417180

RESUMO

Isopenicillin N synthase (IPNS) catalyzes the unique reaction of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) with dioxygen giving isopenicillin N (IPN), the precursor of all natural penicillins and cephalosporins. X-ray free-electron laser studies including time-resolved crystallography and emission spectroscopy reveal how reaction of IPNS:Fe(II):ACV with dioxygen to yield an Fe(III) superoxide causes differences in active site volume and unexpected conformational changes that propagate to structurally remote regions. Combined with solution studies, the results reveal the importance of protein dynamics in regulating intermediate conformations during conversion of ACV to IPN. The results have implications for catalysis by multiple IPNS-related oxygenases, including those involved in the human hypoxic response, and highlight the power of serial femtosecond crystallography to provide insight into long-range enzyme dynamics during reactions presently impossible for nonprotein catalysts.


Assuntos
Elétrons , Oxirredutases , Catálise , Domínio Catalítico , Cristalografia por Raios X , Compostos Férricos , Humanos , Lasers , Oxirredutases/química , Oxigênio/química , Penicilinas/química , Penicilinas/metabolismo , Especificidade por Substrato
3.
Proc Natl Acad Sci U S A ; 117(1): 300-307, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31852825

RESUMO

A major barrier to defining the structural intermediates that arise during the reversible photointerconversion of phytochromes between their biologically inactive and active states has been the lack of crystals that faithfully undergo this transition within the crystal lattice. Here, we describe a crystalline form of the cyclic GMP phosphodiesterases/adenylyl cyclase/FhlA (GAF) domain from the cyanobacteriochrome PixJ in Thermosynechococcus elongatus assembled with phycocyanobilin that permits reversible photoconversion between the blue light-absorbing Pb and green light-absorbing Pg states, as well as thermal reversion of Pg back to Pb. The X-ray crystallographic structure of Pb matches previous models, including autocatalytic conversion of phycocyanobilin to phycoviolobilin upon binding and its tandem thioether linkage to the GAF domain. Cryocrystallography at 150 K, which compared diffraction data from a single crystal as Pb or after irradiation with blue light, detected photoconversion product(s) based on Fobs - Fobs difference maps that were consistent with rotation of the bonds connecting pyrrole rings C and D. Further spectroscopic analyses showed that phycoviolobilin is susceptible to X-ray radiation damage, especially as Pg, during single-crystal X-ray diffraction analyses, which could complicate fine mapping of the various intermediate states. Fortunately, we found that PixJ crystals are amenable to serial femtosecond crystallography (SFX) analyses using X-ray free-electron lasers (XFELs). As proof of principle, we solved by room temperature SFX the GAF domain structure of Pb to 1.55-Å resolution, which was strongly congruent with synchrotron-based models. Analysis of these crystals by SFX should now enable structural characterization of the early events that drive phytochrome photoconversion.


Assuntos
Ficobilinas/metabolismo , Ficocianina/metabolismo , Fitocromo/química , Fitocromo/efeitos da radiação , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Cristalografia , Cristalografia por Raios X , Cianobactérias/química , GMP Cíclico , Luz , Modelos Moleculares , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Células Fotorreceptoras/metabolismo , Ficobilinas/química , Ficocianina/química , Conformação Proteica , Domínios Proteicos , Thermosynechococcus , Transativadores/química
4.
Acta Crystallogr D Struct Biol ; 74(Pt 9): 877-894, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198898

RESUMO

The DIALS diffraction-modeling software package has been applied to serial crystallography data. Diffraction modeling is an exercise in determining the experimental parameters, such as incident beam wavelength, crystal unit cell and orientation, and detector geometry, that are most consistent with the observed positions of Bragg spots. These parameters can be refined by nonlinear least-squares fitting. In previous work, it has been challenging to refine both the positions of the sensors (metrology) on multipanel imaging detectors such as the CSPAD and the orientations of all of the crystals studied. Since the optimal models for metrology and crystal orientation are interdependent, alternate cycles of panel refinement and crystal refinement have been required. To simplify the process, a sparse linear algebra technique for solving the normal equations was implemented, allowing the detector panels to be refined simultaneously against the diffraction from thousands of crystals with excellent computational performance. Separately, it is shown how to refine the metrology of a second CSPAD detector, positioned at a distance of 2.5 m from the crystal, used for recording low-angle reflections. With the ability to jointly refine the detector position against the ensemble of all crystals used for structure determination, it is shown that ensemble refinement greatly reduces the apparent nonisomorphism that is often observed in the unit-cell distributions from still-shot serial crystallography. In addition, it is shown that batching the images by timestamp and re-refining the detector position can realistically model small, time-dependent variations in detector position relative to the sample, and thereby improve the integrated structure-factor intensity signal and heavy-atom anomalous peak heights.


Assuntos
Bacillus/enzimologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Software , Termolisina/química , Difração de Raios X , Algoritmos , Bacillus/classificação , Cristalografia por Raios X , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...