Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
2.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205406

RESUMO

High-density, integrated silicon electrodes have begun to transform systems neuroscience, by enabling large-scale neural population recordings with single cell resolution. Existing technologies, however, have provided limited functionality in nonhuman primate species such as macaques, which offer close models of human cognition and behavior. Here, we report the design, fabrication, and performance of Neuropixels 1.0-NHP, a high channel count linear electrode array designed to enable large-scale simultaneous recording in superficial and deep structures within the macaque or other large animal brain. These devices were fabricated in two versions: 4416 electrodes along a 45 mm shank, and 2496 along a 25 mm shank. For both versions, users can programmatically select 384 channels, enabling simultaneous multi-area recording with a single probe. We demonstrate recording from over 3000 single neurons within a session, and simultaneous recordings from over 1000 neurons using multiple probes. This technology represents a significant increase in recording access and scalability relative to existing technologies, and enables new classes of experiments involving fine-grained electrophysiological characterization of brain areas, functional connectivity between cells, and simultaneous brain-wide recording at scale.

3.
Front Immunol ; 14: 1055429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845123

RESUMO

Importance: The degree of immune protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants provided by infection versus vaccination with wild-type virus remains unresolved, which could influence future vaccine strategies. The gold-standard for assessing immune protection is viral neutralization; however, few studies involve a large-scale analysis of viral neutralization against the Omicron variant by sera from individuals infected with wild-type virus. Objectives: 1) To define the degree to which infection versus vaccination with wild-type SARS-CoV-2 induced neutralizing antibodies against Delta and Omicron variants.2) To determine whether clinically available data, such as infection/vaccination timing or antibody status, can predict variant neutralization. Methods: We examined a longitudinal cohort of 653 subjects with sera collected three times at 3-to-6-month intervals from April 2020 to June 2021. Individuals were categorized according to SARS-CoV-2 infection and vaccination status. Spike and nucleocapsid antibodies were detected via ADVIA Centaur® (Siemens) and Elecsys® (Roche) assays, respectively. The Healgen Scientific® lateral flow assay was used to detect IgG and IgM spike antibody responses. Pseudoviral neutralization assays were performed on all samples using human ACE2 receptor-expressing HEK-293T cells infected with SARS-CoV-2 spike protein pseudotyped lentiviral particles for wild-type (WT), B.1.617.2 (Delta), and B.1.1.529 (Omicron) variants. Results: Vaccination after infection led to the highest neutralization titers at all timepoints for all variants. Neutralization was also more durable in the setting of prior infection versus vaccination alone. Spike antibody clinical testing effectively predicted neutralization for wild-type and Delta. However, nucleocapsid antibody presence was the best independent predictor of Omicron neutralization. Neutralization of Omicron was lower than neutralization of either wild-type or Delta virus across all groups and timepoints, with significant activity only present in patients that were first infected and later immunized. Conclusions: Participants having both infection and vaccination with wild-type virus had the highest neutralizing antibody levels against all variants and had persistence of activity. Neutralization of WT and Delta virus correlated with spike antibody levels against wild-type and Delta variants, but Omicron neutralization was better correlated with evidence of prior infection. These data help explain why 'breakthrough' Omicron infections occurred in previously vaccinated individuals and suggest better protection is observed in those with both vaccination and previous infection. This study also supports the concept of future SARS-CoV-2 Omicron-specific vaccine boosters.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Técnicas e Procedimentos Diagnósticos , Anticorpos Neutralizantes , Infecções Irruptivas , Vacinas contra COVID-19 , Imunoglobulina M , Teste para COVID-19
4.
5.
Nature ; 602(7896): 274-279, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35082444

RESUMO

The brain's remarkable ability to learn and execute various motor behaviours harnesses the capacity of neural populations to generate a variety of activity patterns. Here we explore systematic changes in preparatory activity in motor cortex that accompany motor learning. We trained rhesus monkeys to learn an arm-reaching task1 in a curl force field that elicited new muscle forces for some, but not all, movement directions2,3. We found that in a neural subspace predictive of hand forces, changes in preparatory activity tracked the learned behavioural modifications and reassociated4 existing activity patterns with updated movements. Along a neural population dimension orthogonal to the force-predictive subspace, we discovered that preparatory activity shifted uniformly for all movement directions, including those unaltered by learning. During a washout period when the curl field was removed, preparatory activity gradually reverted in the force-predictive subspace, but the uniform shift persisted. These persistent preparatory activity patterns may retain a motor memory of the learned field5,6 and support accelerated relearning of the same curl field. When a set of distinct curl fields was learned in sequence, we observed a corresponding set of field-specific uniform shifts which separated the associated motor memories in the neural state space7-9. The precise geometry of these uniform shifts in preparatory activity could serve to index motor memories, facilitating the acquisition, retention and retrieval of a broad motor repertoire.


Assuntos
Aprendizagem , Córtex Motor , Destreza Motora , Animais , Aprendizagem/fisiologia , Macaca mulatta/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia
6.
Nat Commun ; 12(1): 3689, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140486

RESUMO

Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging.


Assuntos
Interfaces Cérebro-Computador , Cálcio/metabolismo , Dendritos/fisiologia , Microscopia Intravital/instrumentação , Microscopia Intravital/métodos , Córtex Motor/diagnóstico por imagem , Imagem Multimodal/métodos , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Dendritos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Implantes Experimentais , Macaca mulatta , Masculino , Modelos Neurológicos , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Fótons
7.
Neuron ; 106(2): 329-339.e4, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32053768

RESUMO

Current theories suggest that an error-driven learning process updates trial-by-trial to facilitate motor adaptation. How this process interacts with motor cortical preparatory activity-which current models suggest plays a critical role in movement initiation-remains unknown. Here, we evaluated the role of motor preparation during visuomotor adaptation. We found that preparation time was inversely correlated to variance of errors on current trials and mean error on subsequent trials. We also found causal evidence that intracortical microstimulation during motor preparation was sufficient to disrupt learning. Surprisingly, stimulation did not affect current trials, but instead disrupted the update computation of a learning process, thereby affecting subsequent trials. This is consistent with a Bayesian estimation framework where the motor system reduces its learning rate by virtue of lowering error sensitivity when faced with uncertainty. This interaction between motor preparation and the error-driven learning system may facilitate new probes into mechanisms underlying trial-by-trial adaptation.


Assuntos
Antecipação Psicológica/fisiologia , Aprendizagem/fisiologia , Adaptação Psicológica , Animais , Teorema de Bayes , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Estimulação Elétrica , Macaca mulatta , Estimulação Luminosa , Desempenho Psicomotor/fisiologia
9.
Neuron ; 103(2): 292-308.e4, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31171448

RESUMO

A central goal of systems neuroscience is to relate an organism's neural activity to behavior. Neural population analyses often reduce the data dimensionality to focus on relevant activity patterns. A major hurdle to data analysis is spike sorting, and this problem is growing as the number of recorded neurons increases. Here, we investigate whether spike sorting is necessary to estimate neural population dynamics. The theory of random projections suggests that we can accurately estimate the geometry of low-dimensional manifolds from a small number of linear projections of the data. We recorded data using Neuropixels probes in motor cortex of nonhuman primates and reanalyzed data from three previous studies and found that neural dynamics and scientific conclusions are quite similar using multiunit threshold crossings rather than sorted neurons. This finding unlocks existing data for new analyses and informs the design and use of new electrode arrays for laboratory and clinical use.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Córtex Motor/citologia , Neurônios/fisiologia , Dinâmica não Linear , Algoritmos , Animais , Simulação por Computador , Macaca mulatta , Masculino
10.
Nat Methods ; 15(10): 805-815, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30224673

RESUMO

Neuroscience is experiencing a revolution in which simultaneous recording of thousands of neurons is revealing population dynamics that are not apparent from single-neuron responses. This structure is typically extracted from data averaged across many trials, but deeper understanding requires studying phenomena detected in single trials, which is challenging due to incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. We introduce latent factor analysis via dynamical systems, a deep learning method to infer latent dynamics from single-trial neural spiking data. When applied to a variety of macaque and human motor cortical datasets, latent factor analysis via dynamical systems accurately predicts observed behavioral variables, extracts precise firing rate estimates of neural dynamics on single trials, infers perturbations to those dynamics that correlate with behavioral choices, and combines data from non-overlapping recording sessions spanning months to improve inference of underlying dynamics.


Assuntos
Potenciais de Ação , Algoritmos , Modelos Neurológicos , Córtex Motor/fisiologia , Neurônios/fisiologia , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Dinâmica Populacional , Primatas
11.
Br J Cancer ; 119(7): 815-822, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30206366

RESUMO

BACKGROUND: Gemcitabine is used to treat a wide range of tumours, but its efficacy is limited by cancer cell resistance mechanisms. NUC-1031, a phosphoramidate modification of gemcitabine, is the first anti-cancer ProTide to enter the clinic and is designed to overcome these key resistance mechanisms. METHODS: Sixty-eight patients with advanced solid tumours who had relapsed after treatment with standard therapy were recruited to a dose escalation study to determine the recommended Phase II dose (RP2D) and assess the safety of NUC-1031. Pharmacokinetics and anti-tumour activity was also assessed. RESULTS: Sixty-eight patients received treatment, 50% of whom had prior exposure to gemcitabine. NUC-1031 was well tolerated with the most common Grade 3/4 adverse events of neutropaenia, lymphopaenia and fatigue occurring in 13 patients each (19%). In 49 response-evaluable patients, 5 (10%) achieved a partial response and 33 (67%) had stable disease, resulting in a 78% disease control rate. Cmax levels of the active intracellular metabolite, dFdCTP, were 217-times greater than those reported for equimolar doses of gemcitabine, with minimal toxic metabolite accumulation. The RP2D was determined as 825 mg/m2 on days 1, 8 and 15 of a 28-day cycle. CONCLUSIONS: NUC-1031 was well tolerated and demonstrated clinically significant anti-tumour activity, even in patients with prior gemcitabine exposure and in cancers not traditionally perceived as gemcitabine-responsive.


Assuntos
Antineoplásicos/administração & dosagem , Monofosfato de Citidina/análogos & derivados , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Monofosfato de Citidina/administração & dosagem , Monofosfato de Citidina/efeitos adversos , Monofosfato de Citidina/farmacocinética , Esquema de Medicação , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Recidiva , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
12.
Sci Rep ; 8(1): 6775, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712920

RESUMO

Optogenetic tools have opened a rich experimental landscape for understanding neural function and disease. Here, we present the first validation of eight optogenetic constructs driven by recombinant adeno-associated virus (AAV) vectors and a WGA-Cre based dual injection strategy for projection targeting in a widely-used New World primate model, the common squirrel monkey Saimiri sciureus. We observed opsin expression around the local injection site and in axonal projections to downstream regions, as well as transduction to thalamic neurons, resembling expression patterns observed in macaques. Optical stimulation drove strong, reliable excitatory responses in local neural populations for two depolarizing opsins in anesthetized monkeys. Finally, we observed continued, healthy opsin expression for at least one year. These data suggest that optogenetic tools can be readily applied in squirrel monkeys, an important first step in enabling precise, targeted manipulation of neural circuits in these highly trainable, cognitively sophisticated animals. In conjunction with similar approaches in macaques and marmosets, optogenetic manipulation of neural circuits in squirrel monkeys will provide functional, comparative insights into neural circuits which subserve dextrous motor control as well as other adaptive behaviors across the primate lineage. Additionally, development of these tools in squirrel monkeys, a well-established model system for several human neurological diseases, can aid in identifying novel treatment strategies.


Assuntos
Rede Nervosa/cirurgia , Neurônios/metabolismo , Optogenética/instrumentação , Saimiri/genética , Animais , Axônios/metabolismo , Axônios/patologia , Dependovirus/genética , Humanos , Rede Nervosa/fisiologia , Opsinas/genética , Saimiri/cirurgia , Tálamo/fisiopatologia , Tálamo/cirurgia
14.
J Neural Eng ; 15(2): 026020, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29265009

RESUMO

OBJECTIVE: Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. APPROACH: We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. MAIN RESULTS: The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. SIGNIFICANCE: We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.


Assuntos
Algoritmos , Artefatos , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Força da Mão/fisiologia , Córtex Motor/fisiologia , Animais , Macaca mulatta , Masculino , Análise de Componente Principal
15.
Exp Neurol ; 287(Pt 4): 437-451, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27511294

RESUMO

A central goal of neuroscience is to understand how populations of neurons coordinate and cooperate in order to give rise to perception, cognition, and action. Nonhuman primates (NHPs) are an attractive model with which to understand these mechanisms in humans, primarily due to the strong homology of their brains and the cognitively sophisticated behaviors they can be trained to perform. Using electrode recordings, the activity of one to a few hundred individual neurons may be measured electrically, which has enabled many scientific findings and the development of brain-machine interfaces. Despite these successes, electrophysiology samples sparsely from neural populations and provides little information about the genetic identity and spatial micro-organization of recorded neurons. These limitations have spurred the development of all-optical methods for neural circuit interrogation. Fluorescent calcium signals serve as a reporter of neuronal responses, and when combined with post-mortem optical clearing techniques such as CLARITY, provide dense recordings of neuronal populations, spatially organized and annotated with genetic and anatomical information. Here, we advocate that this methodology, which has been of tremendous utility in smaller animal models, can and should be developed for use with NHPs. We review here several of the key opportunities and challenges for calcium-based optical imaging in NHPs. We focus on motor neuroscience and brain-machine interface design as representative domains of opportunity within the larger field of NHP neuroscience.


Assuntos
Interfaces Cérebro-Computador , Sinalização do Cálcio , Cálcio/análise , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Intravital/métodos , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Primatas/anatomia & histologia , Análise de Célula Única , Algoritmos , Animais , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Comportamento Animal , Conectoma/instrumentação , Técnicas Citológicas/instrumentação , Estimulação Elétrica , Corantes Fluorescentes , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Imageamento Tridimensional , Microscopia Intravital/instrumentação , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Modelos Neurológicos , Atividade Motora , Córtex Motor/citologia , Rede Nervosa/ultraestrutura , Neurônios/química , Neurônios/ultraestrutura , Primatas/fisiologia , Transdução Genética , Vigília
16.
Neuron ; 92(4): 669-671, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27883896

RESUMO

The addition of differentiating follow-through motions can facilitate simultaneous learning of multiple motor skills that would otherwise interfere with each other. In this issue of Neuron, Sheahan and colleagues (2016) demonstrate that it is the preparation, not execution, of different follow-through movements that separates motor memories and reduces interference.


Assuntos
Aprendizagem , Movimento , Humanos , Destreza Motora
17.
J Neurophysiol ; 116(2): 698-708, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27193319

RESUMO

We explored the origins of unintentional changes in performance during accurate force production in isometric conditions seen after turning visual feedback off. The idea of control with referent spatial coordinates suggests that these phenomena could result from drifts of the referent coordinate for the effector. Subjects performed accurate force/moment production tasks by pressing with the fingers of a hand on force sensors. Turning the visual feedback off resulted in slow drifts of both total force and total moment to lower magnitudes of these variables; these drifts were more pronounced in the right hand of the right-handed subjects. Drifts in individual finger forces could be in different direction; in particular, fingers that produced moments of force against the required total moment showed an increase in their forces. The force/moment drift was associated with a drop in the index of synergy stabilizing performance under visual feedback. The drifts in directions that changed performance (non-motor equivalent) and in directions that did not (motor equivalent) were of about the same magnitude. The results suggest that control with referent coordinates is associated with drifts of those referent coordinates toward the corresponding actual coordinates of the hand, a reflection of the natural tendency of physical systems to move toward a minimum of potential energy. The interaction between drifts of the hand referent coordinate and referent orientation leads to counterdirectional drifts in individual finger forces. The results also demonstrate that the sensory information used to create multifinger synergies is necessary for their presence over the task duration.


Assuntos
Retroalimentação Sensorial/fisiologia , Dedos/fisiologia , Movimento/fisiologia , Orientação/fisiologia , Desempenho Psicomotor/fisiologia , Análise de Variância , Feminino , Humanos , Remoção , Masculino , Modelos Biológicos , Adulto Jovem
18.
Eur J Clin Invest ; 45(7): 679-85, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25912957

RESUMO

BACKGROUND: The role of hormones in reduced orthostatic tolerance following long-term immobilization remains uncertain. We have previously shown that plasma concentrations of adrenomedullin and galanin, two peptides with vasodepressor properties, rise significantly during orthostatic challenge. We tested the hypothesis that bedrest immobilization increases the rise in adrenomedullin and galanin during orthostatic challenge leading to presyncope. MATERIALS AND METHODS: We measured baseline (supine), presyncope and recovery (10 min postpresyncope, supine) levels of adrenomedullin and galanin in 8 healthy men, before and after 21 days of -6° head-down bed rest (HDBR). Presyncope was elicited using a combined head-up tilt and graded lower body negative pressure protocol. Orthostatic tolerance was defined as the time taken from the commencement of head-up tilt to the development of presyncope. RESULTS: Orthostatic tolerance time after HDBR reduced by 8·36 ± 5·39 min (P = 0·0032). HDBR increased plasma adrenomedullin concentration to orthostatic challenge (P = 0·0367). Compared to pre-HDBR, a significant rise in post-HDBR presyncopal (P < 0·001) and recovery adrenomedullin concentration (P < 0·01) was demonstrated. In contrast, we observed no change in pre- and post-HDBR galanin levels to orthostatic challenge. CONCLUSIONS: Bedrest immobilization appears to affect adrenomedullin levels in that greater increases in adrenomedullin occur at presyncope following bedrest immobilization. Due to its peripheral vasculature hypotensive effect, the greater levels of adrenomedullin at presyncope following bedrest immobilization may have contributed to the reduced orthostatic capacity postbedrest.


Assuntos
Adrenomedulina/metabolismo , Repouso em Cama , Galanina/metabolismo , Síncope/sangue , Adulto , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Hemodinâmica/fisiologia , Humanos , Pressão Negativa da Região Corporal Inferior , Masculino , Pessoa de Meia-Idade , Decúbito Dorsal/fisiologia , Teste da Mesa Inclinada , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-26738040

RESUMO

Optical functional imaging methods such as calcium imaging have become a powerful tool for investigating neural activity in-vivo. Here, we present a design for a titanium implantable chamber with transparent silicone artificial dura which enables two-photon calcium imaging in non-human primates. This chamber accommodates imaging with high numerical aperture multiphoton objective lenses, and remains sealed, protecting the brain from the surrounding environment. In addition, we describe a tunable tissue stabilization system to apply gentle mechanical pressure to stabilize tissue during imaging. Our results suggest that two-photon calcium imaging may soon facilitate a new class of circuit and systems neuroscience experiments in non-human primates.


Assuntos
Implantes Experimentais , Animais , Dura-Máter , Macaca , Imagem Óptica
20.
J Neurosci Methods ; 219(1): 142-54, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23867081

RESUMO

BACKGROUND: Advances in optogenetics have led to first reports of expression of light-gated ion-channels in non-human primates (NHPs). However, a major obstacle preventing effective application of optogenetics in NHPs and translation to optogenetic therapeutics is the absence of compatible multifunction optoelectronic probes for (1) precision light delivery, (2) low-interference electrophysiology, (3) protein fluorescence detection, and (4) repeated insertion with minimal brain trauma. NEW METHOD: Here we describe a novel brain probe device, a "coaxial optrode", designed to minimize brain tissue damage while microfabricated to perform simultaneous electrophysiology, light delivery and fluorescence measurements in the NHP brain. The device consists of a tapered, gold-coated optical fiber inserted in a polyamide tube. A portion of the gold coating is exposed at the fiber tip to allow electrophysiological recordings in addition to light delivery/collection at the tip. RESULTS: Coaxial optrode performance was demonstrated by experiments in rodents and NHPs, and characterized by computational models. The device mapped opsin expression in the brain and achieved precisely targeted optical stimulation and electrophysiology with minimal cortical damage. COMPARISON WITH EXISTING METHODS: Overall, combined electrical, optical and mechanical features of the coaxial optrode allowed a performance for NHP studies which was not possible with previously existing devices. CONCLUSIONS: Coaxial optrode is currently being used in two NHP laboratories as a major tool to study brain function by inducing light modulated neural activity and behavior. By virtue of its design, the coaxial optrode can be extended for use as a chronic implant and multisite neural stimulation/recording.


Assuntos
Eletrodos , Fibras Ópticas , Optogenética/instrumentação , Optogenética/métodos , Primatas/fisiologia , Algoritmos , Animais , Comportamento Animal/fisiologia , Interpretação Estatística de Dados , Fenômenos Eletrofisiológicos/fisiologia , Compostos de Epóxi , Fluorescência , Macaca mulatta , Metais , Camundongos , Camundongos Transgênicos , Microtecnologia , Método de Monte Carlo , Opsinas/metabolismo , Imagens de Fantasmas , Ratos , Ratos Long-Evans , Processamento de Sinais Assistido por Computador , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...