Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(11)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-38251688

RESUMO

BACKGROUND: Cell culture conditions during manufacturing can impact the clinical efficacy of chimeric antigen receptor (CAR) T cell products. Production methods have not been standardized because the optimal approach remains unknown. Separate CD4+ and CD8+ cultures offer a potential advantage but complicate manufacturing and may affect cell expansion and function. In a phase 1/2 clinical trial, we observed poor expansion of separate CD8+ cell cultures and hypothesized that coculture of CD4+ cells and CD8+ cells at a defined ratio at culture initiation would enhance CD8+ cell expansion and simplify manufacturing. METHODS: We generated CAR T cells either as separate CD4+ and CD8+ cells, or as combined cultures mixed in defined CD4:CD8 ratios at culture initiation. We assessed CAR T cell expansion, phenotype, function, gene expression, and in vivo activity of CAR T cells and compared these between separately expanded or mixed CAR T cell cultures. RESULTS: We found that the coculture of CD8+ CAR T cells with CD4+ cells markedly improves CD8+ cell expansion, and further discovered that CD8+ cells cultured in isolation exhibit a hypofunctional phenotype and transcriptional signature compared with those in mixed cultures with CD4+ cells. Cocultured CAR T cells also confer superior antitumor activity in vivo compared with separately expanded cells. The positive impact of CD4+ cells on CD8+ cells was mediated through both cytokines and direct cell contact, including CD40L-CD40 and CD70-CD27 interactions. CONCLUSIONS: Our data indicate that CD4+ cell help during cell culture maintains robust CD8+ CAR T cell function, with implications for clinical cell manufacturing.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Linfócitos T CD4-Positivos , Técnicas de Cultura de Células , Linfócitos T CD8-Positivos , Fenótipo
2.
Leukemia ; 36(6): 1485-1491, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474099

RESUMO

Radioimmunotherapy (RIT) has long been pursued to improve outcomes in acute leukemia and higher-risk myelodysplastic syndrome (MDS). Of increasing interest are alpha-particle-emitting radionuclides such as astatine-211 (211At) as they deliver large amounts of radiation over just a few cell diameters, enabling efficient and selective target cell kill. Here, we developed 211At-based RIT targeting CD123, an antigen widely displayed on acute leukemia and MDS cells including underlying neoplastic stem cells. We generated and characterized new murine monoclonal antibodies (mAbs) specific for human CD123 and selected four, all of which were internalized by CD123+ target cells, for further characterization. All mAbs could be conjugated to a boron cage, isothiocyanatophenethyl-ureido-closo-decaborate(2-) (B10), and labeled with 211At. CD123+ cell targeting studies in immunodeficient mice demonstrated specific uptake of 211At-labeled anti-CD123 mAbs in human CD123+ MOLM-13 cell tumors in the flank. In mice injected intravenously with MOLM-13 cells or a CD123NULL MOLM-13 subline, a single dose of up to 40 µCi of 211At delivered via anti-CD123 mAb decreased tumor burdens and substantially prolonged survival dose dependently in mice bearing CD123+ but not CD123- leukemia xenografts, demonstrating potent and target-specific in vivo anti-leukemia efficacy. These data support the further development of 211At-CD123 RIT toward clinical application.


Assuntos
Astato , Leucemia Mieloide Aguda , Doença Aguda , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Astato/uso terapêutico , Humanos , Subunidade alfa de Receptor de Interleucina-3 , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Radioimunoterapia
3.
Mol Cancer Ther ; 19(12): 2575-2584, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33082277

RESUMO

Pretargeted radioimmunotherapy (PRIT) has been investigated as a multi-step approach to decrease relapse and toxicity for high-risk acute myeloid leukemia (AML). Relevant factors including endogenous biotin and immunogenicity, however, have limited the use of PRIT with an anti-CD45 antibody streptavidin conjugate and radiolabeled DOTA-biotin. To overcome these limitations we designed anti-murine and anti-human CD45 bispecific antibody constructs using 30F11 and BC8 antibodies, respectively, combined with an anti-yttrium (Y)-DOTA single-chain variable fragment (C825) to capture a radiolabeled ligand. The bispecific construct targeting human CD45 (BC8-Fc-C825) had high uptake in leukemia HEL xenografts [7.8 ± 0.02% percent injected dose/gram of tissue (% ID/g)]. Therapy studies showed that 70% of mice with HEL human xenografts treated with BC8-Fc-C825 followed by 44.4 MBq (1,200 µCi) of 90Y-DOTA-biotin survived at least 170 days after therapy, while all nontreated controls required euthanasia because of tumor progression by day 32. High uptake at sites of leukemia (spleen and bone marrow) was also seen with 30F11-IgG1-C825 in a syngeneic disseminated SJL murine leukemia model (spleen, 9.0 ± 1.5% ID/g and bone marrow, 8.1 ± 1.2% ID/g), with minimal uptake in all other normal organs (<0.5% ID/g) at 24 hours after 90Y-DOTA injections. SJL leukemia mice treated with the bispecific 30F11-IgG1-C825 and 29.6 MBq (800 µCi) of 90Y-DOTA-biotin had a survival advantage compared with untreated leukemic mice (median, 43 vs. 30 days, respectively; P < 0.0001). These data suggest bispecific antibody-mediated PRIT may be highly effective for leukemia therapy and translation to human studies.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Biotina/análogos & derivados , Antígenos Comuns de Leucócito/antagonistas & inibidores , Compostos Organometálicos/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Animais , Anticorpos Biespecíficos/genética , Biotina/antagonistas & inibidores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Engenharia Genética , Humanos , Leucemia Mieloide , Camundongos , Proteínas Recombinantes de Fusão/genética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Blood ; 134(15): 1247-1256, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31395601

RESUMO

Minimal residual disease (MRD) has become an increasingly prevalent and important entity in multiple myeloma (MM). Despite deepening responses to frontline therapy, roughly 75% of MM patients never become MRD-negative to ≤10-5, which is concerning because MRD-negative status predicts significantly longer survival. MM is highly heterogeneous, and MRD persistence may reflect survival of isolated single cells and small clusters of treatment-resistant subclones. Virtually all MM clones are exquisitely sensitive to radiation, and the α-emitter astatine-211 (211At) deposits prodigious energy within 3 cell diameters, which is ideal for eliminating MRD if effectively targeted. CD38 is a proven MM target, and we conjugated 211At to an anti-CD38 monoclonal antibody to create an 211At-CD38 therapy. When examined in a bulky xenograft model of MM, single-dose 211At-CD38 at 15 to 45 µCi at least doubled median survival of mice relative to untreated controls (P < .003), but no mice achieved complete remission and all died within 75 days. In contrast, in a disseminated disease model designed to reflect low-burden MRD, 3 studies demonstrated that single-dose 211At-CD38 at 24 to 45 µCi produced sustained remission and long-term survival (>150 days) for 50% to 80% of mice, where all untreated mice died in 20 to 55 days (P < .0001). Treatment toxicities were transient and minimal. These data suggest that 211At-CD38 offers the potential to eliminate residual MM cell clones in low-disease-burden settings, including MRD. We are optimistic that, in a planned clinical trial, addition of 211At-CD38 to an autologous stem cell transplant (ASCT) conditioning regimen may improve ASCT outcomes for MM patients.


Assuntos
ADP-Ribosil Ciclase 1 , Astato/uso terapêutico , Imunoconjugados/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Neoplasia Residual/tratamento farmacológico , ADP-Ribosil Ciclase 1/análise , Astato/administração & dosagem , Astato/farmacocinética , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/farmacocinética , Masculino , Mieloma Múltiplo/patologia , Neoplasia Residual/patologia
5.
Blood ; 131(6): 611-620, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29158362

RESUMO

Pretargeted radioimmunotherapy (PRIT) has demonstrated remarkable efficacy targeting tumor antigens, but immunogenicity and endogenous biotin blocking may limit clinical translation. We describe a new PRIT approach for the treatment of multiple myeloma (MM) and other B-cell malignancies, for which we developed an anti-CD38-bispecific fusion protein that eliminates endogenous biotin interference and immunogenic elements. In murine xenograft models of MM and non-Hodgkin lymphoma (NHL), the CD38-bispecific construct demonstrated excellent blood clearance and tumor targeting. Dosimetry calculations showed a tumor-absorbed dose of 43.8 Gy per millicurie injected dose of 90Y, with tumor-to-normal organ dose ratios of 7:1 for liver and 15:1 for lung and kidney. In therapy studies, CD38-bispecific PRIT resulted in 100% complete remissions by day 12 in MM and NHL xenograft models, ultimately curing 80% of mice at optimal doses. In direct comparisons, efficacy of the CD38 bispecific proved equal or superior to streptavidin (SA)-biotin-based CD38-SA PRIT. Each approach cured at least 75% of mice at the highest radiation dose tested (1200 µCi), whereas at 600- and 1000-µCi doses, the bispecific outperformed the SA approach, curing 35% more mice overall (P < .004). The high efficacy of bispecific PRIT, combined with its reduced risk of immunogenicity and endogenous biotin interference, make the CD38 bispecific an attractive candidate for clinical translation. Critically, CD38 PRIT may benefit patients with unresponsive, high-risk disease because refractory disease typically retains radiation sensitivity. We posit that PRIT might not only prolong survival, but possibly cure MM and treatment-refractory NHL patients.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Anticorpos Biespecíficos/uso terapêutico , Leucemia de Células B/radioterapia , Linfoma de Células B/radioterapia , Mieloma Múltiplo/radioterapia , Radioimunoterapia/métodos , ADP-Ribosil Ciclase 1/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Feminino , Humanos , Leucemia de Células B/patologia , Linfoma de Células B/patologia , Camundongos Nus , Terapia de Alvo Molecular , Mieloma Múltiplo/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Immunother ; 41(1): 19-31, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29176334

RESUMO

Chimeric antigen receptor (CAR)-based adoptive T-cell therapy is a highly promising treatment for lymphoid malignancies, and CD20 is an ideal target antigen. We previously developed a lentiviral construct encoding a third generation CD20-targeted CAR but identified several features that required additional optimization before clinical translation. We describe here several improvements, including replacement of the immunogenic murine antigen-binding moiety with a fully human domain, streamlining the transgene insert to enhance lentiviral titers, modifications to the extracellular IgG spacer that abrogate nonspecific activation resulting from binding to Fc receptors, and evaluation of CD28, 4-1BB, or CD28 and 4-1BB costimulatory domains. We also found that restimulation of CAR T cells with an irradiated CD20 cell line boosted cell growth, increased the fraction of CAR-expressing cells, and preserved in vivo function despite leading to a reduced capacity for cytokine secretion in vitro. We also found that cryopreservation of CAR T cells did not affect immunophenotype or in vivo antitumor activity compared with fresh cells. These optimization steps resulted in significant improvement in antitumor activity in mouse models, resulting in eradication of established systemic lymphoma tumors in 75% of mice with a single infusion of CAR T cells, and prolonged in vivo persistence of modified cells. These results provide the basis for clinical testing of a lentiviral construct encoding a fully human CD20-targeted CAR with CD28 and 4-1BB costimulatory domains and truncated CD19 (tCD19) transduction marker.


Assuntos
Imunoterapia Adotiva/métodos , Linfoma/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/fisiologia , Animais , Antígenos CD19/farmacologia , Antígenos CD20/imunologia , Antígenos CD28/genética , Técnicas de Cultura de Células , Células Cultivadas , Citotoxicidade Imunológica , Avaliação Pré-Clínica de Medicamentos , Feminino , Engenharia Genética , Humanos , Ativação Linfocitária , Linfoma/imunologia , Masculino , Camundongos , Camundongos SCID , Neoplasias Experimentais , Proteínas Recombinantes de Fusão , Linfócitos T/transplante , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Res ; 77(14): 3885-3893, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28566329

RESUMO

Constitutive B-cell receptor signaling leads to overexpression of the antiapoptotic BCL-2 protein and is implicated in the pathogenesis of many types of B-cell non-Hodgkin lymphoma (B-NHL). The BCL-2 small-molecule inhibitor venetoclax shows promising clinical response rates in several lymphomas, but is not curative as monotherapy. Radiotherapy is a rational candidate for combining with BCL-2 inhibition, as DNA damage caused by radiotherapy increases the activity of pro-apoptotic BCL-2 pathway proteins, and lymphomas are exquisitely sensitive to radiation. We tested B-NHL responses to venetoclax combined with either external beam radiotherapy or radioimmunotherapy (RIT), which joins the selectivity of antibody targeting with the effectiveness of irradiation. We first tested cytotoxicity of cesium-137 irradiation plus venetoclax in 14 B-NHL cell lines representing five lymphoma subtypes. Combination treatment synergistically increased cell death in 10 of 14 lines. Lack of synergy was predicted by resistance to single-agent venetoclax and high BCL-XL expression. We then assessed the efficacy of external beam radiotherapy plus venetoclax in murine xenograft models of mantle cell (MCL), germinal-center diffuse large B-cell (GCB-DLBCL), and activated B-cell (ABC-DLBCL) lymphomas. In each model, external beam radiotherapy plus venetoclax synergistically increased mouse survival time, curing up to 10%. We finally combined venetoclax treatment of MCL and ABC-DLBCL xenografts with a pretargeted RIT (PRIT) system directed against the CD20 antigen. Optimal dosing of PRIT plus venetoclax cured 100% of mice with no detectable toxicity. Venetoclax combined with radiotherapy may be a promising treatment for a wide range of lymphomas Cancer Res; 77(14); 3885-93. ©2017 AACR.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/radioterapia , Sulfonamidas/farmacologia , Animais , Linhagem Celular Tumoral , Radioisótopos de Césio/farmacologia , Quimiorradioterapia , Feminino , Humanos , Linfoma de Células B/imunologia , Camundongos , Camundongos Endogâmicos NOD , Tolerância a Radiação/efeitos dos fármacos , Radioimunoterapia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Res ; 76(22): 6669-6679, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590740

RESUMO

Streptavidin (SA)-biotin pretargeted radioimmunotherapy (PRIT) that targets CD20 in non-Hodgkin lymphoma (NHL) exhibits remarkable efficacy in model systems, but SA immunogenicity and interference by endogenous biotin may complicate clinical translation of this approach. In this study, we engineered a bispecific fusion protein (FP) that evades the limitations imposed by this system. Briefly, one arm of the FP was an anti-human CD20 antibody (2H7), with the other arm of the FP an anti-chelated radiometal trap for a radiolabeled ligand (yttrium[Y]-DOTA) captured by a very high-affinity anti-Y-DOTA scFv antibody (C825). Head-to-head biodistribution experiments comparing SA-biotin and bispecific FP (2H7-Fc-C825) PRIT in murine subjects bearing human lymphoma xenografts demonstrated nearly identical tumor targeting by each modality at 24 hours. However, residual radioactivity in the blood and normal organs was consistently higher following administration of 1F5-SA compared with 2H7-Fc-C825. Consequently, tumor-to-normal tissue ratios of distribution were superior for 2H7-Fc-C825 (P < 0.0001). Therapy studies in subjects bearing either Ramos or Granta subcutaneous lymphomas demonstrated that 2H7-Fc-C825 PRIT is highly effective and significantly less myelosuppressive than 1F5-SA (P < 0.0001). All animals receiving optimal doses of 2H7-Fc-C825 followed by 90Y-DOTA were cured by 150 days, whereas the growth of tumors in control animals progressed rapidly with complete morbidity by 25 days. In addition to demonstrating reduced risk of immunogenicity and an absence of endogenous biotin interference, our findings offer a preclinical proof of concept for the preferred use of bispecific PRIT in future clinical trials, due to a slightly superior biodistribution profile, less myelosuppression, and superior efficacy. Cancer Res; 76(22); 6669-79. ©2016 AACR.


Assuntos
Anticorpos Biespecíficos/metabolismo , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/radioterapia , Radioimunoterapia/métodos , Estreptavidina/uso terapêutico , Animais , Anticorpos Biespecíficos/análise , Feminino , Humanos , Linfoma de Células B/patologia , Camundongos , Estreptavidina/farmacologia
9.
Physiol Biochem Zool ; 76(4): 484-96, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-13130428

RESUMO

Temperature acclimation may be a critical component of the locomotor physiology and ecology of ectothermic animals, particularly those living in eurythermal environments. Several studies of fish report striking acclimation of biochemical and kinetic properties in isolated muscle. However, the relatively few studies of whole-animal performance report variable acclimation responses. We test the hypothesis that different types of whole-animal locomotion will respond differently to temperature acclimation, probably due to divergent physiological bases of locomotion. We studied two cyprinid fishes, tinfoil barbs (Puntius schwanenfeldii) and river barbels (Barbus barbus). Study fish were acclimated to either cold or warm temperatures for at least 6 wk and then assayed at four test temperatures for three types of swimming performance. We measured voluntary swimming velocity to estimate routine locomotor behavior, maximum fast start velocity to estimate anaerobic capacity, and critical swimming velocity to estimate primarily aerobic capacity. All three performance measures showed some acute thermal dependence, generally a positive correlation between swimming speed and test temperature. However, each performance measure responded quite differently to acclimation. Critical speeds acclimated strongly, maximum speeds not at all, and voluntary speeds uniquely in each species. Thus we conclude that long-term temperature exposure can have very different consequences for different types of locomotion, consistent with our hypothesis. The data also address previous hypotheses that predict that polyploid and eurythermal fish will have greater acclimation abilities than other fish, due to increased genetic flexibility and ecological selection, respectively. Our results conflict with these predictions. River barbels are eurythermal polyploids and tinfoil barbs stenothermal diploids, yet voluntary swimming acclimated strongly in tinfoil barbs and minimally in river barbels, and acclimation was otherwise comparable.


Assuntos
Aclimatação/fisiologia , Cyprinidae/fisiologia , Natação/fisiologia , Temperatura , Aclimatação/genética , Análise de Variância , Animais , Poliploidia
10.
Evolution ; 56(4): 776-84, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12038535

RESUMO

Predators are widely assumed to create selection that shapes the evolution of prey escape abilities. However, this assumption is difficult to test directly due to the challenge of recording both predation and its evolutionary consequences in the wild. We examined these events by studying natural and experimental populations of Trinidadian guppies, Poecilia reticulata, which occur in distinct high-predation and low-predation environments within streams. Importantly, in the last two decades several populations of guppies have been experimentally introduced from one type of predatory environment into the other, allowing measurements of the consequences of change. We used this system to test two hypotheses: First, that changes in predatory environments create phenotypic selection favoring changes in escape ability of guppies, and second, that this selection can result in rapid evolution. For the first test we compared escape ability of wild caught guppies from high- versus low-predation environments by measuring survival rates during staged encounters with a major predator, the pike cichlid Crenicichla alta. We used guppies from three streams, comparing two within-stream pairs of natural populations and three within-stream pairs of an introduced population versus its natural source population. In every comparison, guppies from the high-predation population showed higher survival. These multiple, parallel divergences in guppy survival phenotype suggest that predatory environment does create selection of escape ability. We tested our second hypothesis by rearing guppies in common garden conditions in the laboratory, then repeating the earlier experiments using the F2 generation. As before, each comparison resulted in higher survival of guppies descended from the high-predation populations, demonstrating that population differences in escape ability have a genetic basis. These results also show that escape ability can evolve very rapidly in nature, that is, within 26-36 generations in the introduced populations. Interestingly, we found rapid evolutionary loss of escape ability in populations introduced into low-predation environments, suggesting that steep fitness trade-offs may influence the evolution of escape traits.


Assuntos
Evolução Biológica , Reação de Fuga , Poecilia/genética , Animais , Fenótipo , Poecilia/fisiologia , Trinidad e Tobago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...