Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946372

RESUMO

Nowadays, cervical cancer (CC) is treated as the leading cancer among women throughout the world. Despite effective vaccination and improved surgery and treatment, CC retains its fatality rate of about half of the infected population globally. The major screening biomarkers and therapeutic target identification have now become a global concern. In the present study, we have employed systems biology approaches to retrieve the potential biomarkers and pathways from transcriptomic profiling. Initially, we have identified 76 of each up-regulated and down-regulated gene from a total of 4643 differentially expressed genes. The up-regulatory genes mainly concentrate on immune-inflammatory responses, and the down-regulatory genes are on receptor binding and gamma-glutamyltransferase. The involved pathways associated with these genes were also assessed through pathway enrichment, and we mainly focused on different cancer pathways, immunoresponse, and cell cycle pathways. After the subsequent enrichment of these genes, we have identified 12 hub genes, which play a crucial role in CC and are verified by expression profile analysis. From our study, we have found that genes LILRB2 and CYBB play crucial roles in CC, as reported here for the first time. Furthermore, the survivability of the hub genes was also assessed, and among them, finally, CXCR4 has been identified as one of the most potential differentially expressed genes that might play a vital role in the survival of CC patients. Thus, CXCR4 could be used as a prognostic and/or diagnostic biomarker and a drug target for CC.

2.
In Silico Pharmacol ; 9(1): 21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717824

RESUMO

Marburg virus is one of the world's most threatening diseases, causing extreme hemorrhagic fever, with a death rate of up to 90%. The Food and Drug Administration (FDA) currently not authorized any treatments or vaccinations for the hindrance and post-exposure of the Marburg virus. In the present study, the vaccinomics methodology was adopted to design a potential novel peptide vaccine against the Marburg virus, targeting RNA-directed RNA polymerase (l). A total of 48 l-proteins from diverse variants of the Marburg virus were collected from the NCBI GenBank server and used to classify the best antigenic protein leading to predict equally T and B-cell epitopes. Initially, the top 26 epitopes were evaluated for the attraction with major histocompatibility complex (MHC) class I and II alleles. Finally, four prospective central epitopes NLSDLTFLI, FRYEFTRHF, YRLRNSTAL, and YRVRNVQTL were carefully chosen. Among these, FRYEFTRHF and YRVRNVQTL peptides showed 100% conservancy. Though YRLRNSTAL showed 95.74% conservancy, it demonstrated the highest combined score as T cell epitope (2.5461) and population coverage of 94.42% among the whole world population. The epitope was found non-allergenic, and docking interactions with human leukocyte antigens (HLAs) also verified. Finally, in vivo analysis of the recommended peptides might contribute to the advancement of an efficient and exclusively prevalent vaccine that would be an active route to impede the virus spreading. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40203-021-00080-3.

3.
Infect Genet Evol ; 88: 104699, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33385575

RESUMO

Plasmodium falciparum, the prime causative agent of malaria, is responsible for 4, 05,000 deaths per year and fatality rates are higher among the children aged below 5 years. The emerging distribution of the multi-drug resistant P. falciparum becomes a worldwide concern, so the identification of unique targets and novel inhibitors is a prime need now. In the present study, we have employed pharmacoinformatics approaches to analyze 265 lead-like compounds from PubChem databases for virtual screening. Thereafter, 15 lead-like compounds were docked within the active side pocket of importin alpha. Comparative ligand properties and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile were also assessed. Finally, a novel inhibitor was designed and assessed computationally for its efficacy. From the comparative analysis we have found that our screened compounds possess better results than the existing lead ivermectin; having the highest binding energy of -15.6 kcal/mol, whereas ivermectin has -12.4 kcal/mol. The novel lead compound possessed more fascinating output without deviating any of the rules of Lipinski. It also possessed higher bioavailability and the drug-likeness score of 0.55 and 0.71, respectively compared to ivermectin. Furthermore, the binding study was confirmed by molecular dynamics simulation over 25 ns by evaluating the stability of the complex. Finally, all the screened compounds and the novel compound showed promising ADMET properties likewise. To end, we hope that our proposed screened compounds, as well as the novel compound, might give some advances to treat malaria efficiently in vitro and in vivo.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/química , Plasmodium falciparum/efeitos dos fármacos , alfa Carioferinas/química , beta Carioferinas/química , Desenho de Fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Humanos , Ligantes , Malária Falciparum/parasitologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
4.
Int J Antimicrob Agents ; 56(6): 106177, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32987103

RESUMO

To date, the global COVID-19 pandemic has been associated with 11.8 million cases and over 545481 deaths. In this study, we have employed virtual screening approaches and selected 415 lead-like compounds from 103 million chemical substances, based on the existing drugs, from PubChem databases as potential candidates for the S protein-mediated viral attachment inhibition. Thereafter, based on drug-likeness and Lipinski's rules, 44 lead-like compounds were docked within the active side pocket of the viral-host attachment site of the S protein. Corresponding ligand properties and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile were measured. Furthermore, four novel inhibitors were designed and assessed computationally for efficacy. Comparative analysis showed the screened compounds in this study maintain better results than the proposed mother compounds, VE607 and SSAA09E2. The four designed novel lead compounds possessed more fascinating output without deviating from any of Lipinski's rules. They also showed higher bioavailability and the drug-likeness score was 0.56 and 1.81 compared with VE607 and SSAA09E2, respectively. All the screened compounds and novel compounds showed promising ADMET properties. Among them, the compound AMTM-02 was the best candidate, with a docking score of -7.5 kcal/mol. Furthermore, the binding study was verified by molecular dynamics simulation over 100 ns by assessing the stability of the complex. The proposed screened compounds and the novel compounds may give some breakthroughs for the development of a therapeutic drug to treat SARS-CoV-2 proficiently in vitro and in vivo.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Ligação Viral/efeitos dos fármacos , Domínio Catalítico , Humanos , Simulação de Dinâmica Molecular , Filogenia , Glicoproteína da Espícula de Coronavírus/química , Tratamento Farmacológico da COVID-19
5.
3 Biotech ; 8(2): 81, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29430345

RESUMO

Lassa virus (LASV) is responsible for an acute viral hemorrhagic fever known as Lassa fever. Sequence analyses of LASV proteome identified the most immunogenic protein that led to predict both T-cell and B-cell epitopes and further target and binding site depiction could allow novel drug findings for drug discovery field against this virus. To induce both humoral and cell-mediated immunity peptide sequence SSNLYKGVY, conserved region 41-49 amino acids were found as the most potential B-cell and T-cell epitopes, respectively. The peptide sequence might intermingle with 17 HLA-I and 16 HLA-II molecules, also cover 49.15-96.82% population coverage within the common people of different countries where Lassa virus is endemic. To ensure the binding affinity to both HLA-I and HLA-II molecules were employed in docking simulation with suggested epitope sequence. Further the predicted 3D structure of the most immunogenic protein was analyzed to reveal out the binding site for the drug design against Lassa Virus. Herein, sequence analyses of proteome identified the most immunogenic protein that led to predict both T-cell and B-cell epitopes and further target and binding site depiction could allow novel drug findings for drug discovery field against this virus.

6.
In Silico Pharmacol ; 6(1): 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30607324

RESUMO

Shigella flexneri 2a is one of the most pathogenic bacteria among the Shigella spp., which is responsible for dysentery and causes masses of deaths throughout the world per year. A proper identification of the potential drug targets and inhibitors is crucial for the treatment of the shigellosis due to their emerging multidrug resistance (MDR) patterns. In this study, a systematic subtractive approach was implemented for the identification of novel therapeutic targets of S. flexneri 2a (301) through genome-wide metabolic pathway analysis of the essential genes and proteins. Ligand-based virtual screening and ADMET analyses were also made for the identification of potential inhibitors as well. Initially, we found 70 essential unique proteins as novel targets. After subsequent prioritization, finally we got six unique targets as the potential therapeutic targets and their three-dimensional models were built thereafter. Aspartate-ß-semialdehyde dehydrogenase (ASD), was the most potent target among them and used for docking analysis through ligand-based virtual screening. The compound 3 (PubChem CID: 11319750) suited well as the best inhibitor of the ASD through ADMET and enzyme inhibition capacity analysis. To end, we hope that our proposed therapeutic targets and its inhibitors might give some breakthrough to treat shigellosis efficiently in in vitro.

7.
J Immunol Res ; 2017: 6412353, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29082265

RESUMO

Shigellosis, a bacillary dysentery, is closely associated with diarrhoea in human and causes infection of 165 million people worldwide per year. Casein-degrading serine protease autotransporter of enterobacteriaceae (SPATE) subfamily protein SigA, an outer membrane protein, exerts both cytopathic and enterotoxic effects especially cytopathic to human epithelial cell type-2 (HEp-2) and is shown to be highly immunogenic. In the present study, we have tried to impose the vaccinomics approach for designing a common peptide vaccine candidate against the immunogenic SigA of Shigella spp. At first, 44 SigA proteins from different variants of S. flexneri, S. dysenteriae, S. boydii, and S. sonnei were assessed to find the most antigenic protein. We retrieved 12 peptides based on the highest score for human leukocyte antigen (HLA) supertypes analysed by NetCTL. Initially, these peptides were assessed for the affinity with MHC class I and class II alleles, and four potential core epitopes VTARAGLGY, FHTVTVNTL, HTTWTLTGY, and IELAGTLTL were selected. From these, FHTVTVNTL and IELAGTLTL peptides were shown to have 100% conservancy. Finally, IELAGTLTL was shown to have the highest population coverage (83.86%) among the whole world population. In vivo study of the proposed epitope might contribute to the development of functional and unique widespread vaccine, which might be an operative alleyway to thwart dysentery from the world.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/genética , Disenteria Bacilar/imunologia , Células Epiteliais/fisiologia , Epitopos Imunodominantes/genética , Shigella/imunologia , Sistemas de Secreção Tipo V/genética , Vacinas de Subunidades Antigênicas/genética , Caseínas/metabolismo , Diarreia , Mapeamento de Epitopos , Antígenos HLA/metabolismo , Humanos , Epitopos Imunodominantes/imunologia , Vacinação em Massa , Ligação Proteica , Conformação Proteica , Sistemas de Secreção Tipo V/imunologia
8.
Comput Biol Chem ; 65: 29-36, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27744094

RESUMO

Chagas is a parasitic disease with major threat to public health due to its resistance against commonly available drugs. Trypanothione reductase (TryR) is the key enzyme to develop this disease. Though this enzyme is well thought-out as potential drug target, the accurate structure of enzyme-inhibitor complex is required to design a potential inhibitor which is less available for TryR. In this research, we aimed to investigate the advanced drug over the available existing drugs by designing inhibitors as well as to identify a new enzyme-inhibitor complex that may act as a template for drug design. A set of analogues were designed from a known inhibitor Quinacrine Mustard (QUM) to identify the effective inhibitor against this enzyme. Further, the pharmacoinformatics elucidation and structural properties of designed inhibitor proposed effective drug candidates against Chagas disease. Molecular docking study suggests that a designed inhibitor has higher binding affinity in both crystal and modeled TryR and also poses similar interacting residues as of crystal TryR-QUM complex structure. The comparative studies based on in silico prediction proposed an enzyme-inhibitor complex which could be effective to control the disease activity. So our in silico analysis based on TryR built model, Pharmacophore and docking analysis might play an important role for the development of novel therapy for Chagas disease. But both animal model experiments and clinical trials must be done to confirm the efficacy of the therapy.


Assuntos
Doença de Chagas/prevenção & controle , Inibidores Enzimáticos/farmacologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Simulação de Acoplamento Molecular
9.
Parasitol Res ; 115(6): 2191-202, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26922178

RESUMO

The phylum Apicomplexa includes a large group of early branching eukaryotes having significant medical and economical importance. The molecular machinery responsible for protein trafficking is poorly understood in these apicomplexans. One of the most important proteins involved in clathrin-mediated protein trafficking is Epsin, which contains ENTH domain, a conserved domain crucial for membrane bending leading to vesicle formation. We undertook homology searching and phylogenetic analyses to produce a rigorously annotated set of Epsin homologs retrieved from diverse apicomplexan genomes. Genomic and phylogenetic comparisons revealed that apicomplexans contain unusual Epsin homologs that are distinct from those observed in mammals and yeast. Although there are four Epsin genes in mammalian system and five in the yeast genome, apicomplexan parasites consist only a single Epsin gene. The apicomplexan Epsin contains the conserved ENTH domain consisting of phosphoinositide (PtdIns)-binding sites which indicate about their functional significance in the formation of vesicles; however, the absence of ubiquitin-interacting motif (UIM) suggests a possible different mechanism for protein trafficking. The existence of dileucine motif in Plasmodium, Cryptosporidum parvum and Eimeria tenella Epsins might solve their functionality while lacking a lot of conserved motifs as this motif is known to interact with different adaptor protein complexes (AP1, AP2 and AP3). Other Epsin homologs are also shown to have different peptide motifs reported for possible interaction with α-ear appendage, γ-ear appendage and EH domain present in different adaptors. Bioinformatic and phylogenetic analyses suggest that the apicomplexan Epsins have unusual functionality from that of the mammalian Epsins. This detailed study may greatly facilitate future molecular cell biological investigation for the role of Epsins in these parasites.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Apicomplexa/genética , Genômica , Proteínas de Protozoários/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Apicomplexa/metabolismo , Sítios de Ligação , Clatrina/metabolismo , Modelos Moleculares , Filogenia , Domínios Proteicos , Transporte Proteico , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
10.
Adv Appl Bioinform Chem ; 8: 1-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25609983

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic viral disease with a disease fatality rate between 15% and 70%. Despite the wide range of distribution, the virus (CCHFV) is basically endemic in Africa, Asia, eastern Europe, and the Middle East. Acute febrile illness associated with petechiae, disseminated intravascular coagulation, and multiple-organ failure are the main symptoms of the disease. With all these fatal effects, CCHFV is considered a huge threat as no successful therapeutic approach is currently available for the treatment of this disease. In the present study, we have used the immunoinformatics approach to design a potential epitope-based vaccine against the RNA-dependent RNA polymerase-L of CCHFV. Both the T-cell and B-cell epitopes were assessed, and the epitope "DCSSTPPDR" was found to be the most potential one, with 100% conservancy among all the strains of CCHFV. The epitope was also found to interact with both type I and II major histocompatibility complex molecules and is considered nonallergenic as well. In vivo study of our proposed peptide is advised for novel universal vaccine production, which might be an effective path to prevent CCHF disease.

11.
Bioinformation ; 11(11): 493-500, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26912949

RESUMO

Streptomyces xinghaiensis is a Gram-positive, aerobic and non-motile bacterium. The bacterial genome is known. Therefore, it is of interest to study the uncharacterized proteins in the genome. An uncharacterized protein (gi|518540893|86 residues) in the genome was selected for a comprehensive computational sequence-structure-function analysis using available data and tools. Subcellular localization of the targeted protein with conserved residues and assigned secondary structures is documented. Sequence homology search against the protein data bank (PDB) and non-redundant GenBank proteins using BLASTp showed different homologous proteins with known antitoxin function. A homology model of the target protein was developed using a known template (PDB ID: 3CTO:A) with 62% sequence similarity in HHpred after assessment using programs PROCHECK and QMEAN6. The predicted active site using CASTp is analyzed for assigned anti-toxin function. This information finds specific utility in annotating the said uncharacterized protein in the bacterial genome.

12.
In Silico Pharmacol ; 3(1): 7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26820892

RESUMO

PURPOSE: Ebola virus (EBOV) is such kind of virus which is responsible for 23,825 cases and 9675 deaths worldwide only in 2014 and with an average diseases fatality rate between 25 % and 90 %. Although, medical technology has tried to handle the problems, there is no Food and Drug Administration (FDA)-approved therapeutics or vaccines available for the prevention, post exposure, or treatment of Ebola virus disease (EVD). METHODS: In the present study, we used the immunoinformatics approach to design a potential epitope-based vaccine against the RNA-dependent RNA polymerase-L of EBOV. BioEdit v7.2.3 sequence alignment editor, Jalview v2 and CLC Sequence Viewer v7.0.2 were used for the initial sequence analysis for securing the conservancy from the sequences. Later the Immune Epitope Database and Analysis Resource (IEDB-AR) was used for the identification of T-cell and B-cellepitopes associated with type I and II major histocompatibility complex molecules analysis. Finally, the population coverage analysis was employed. RESULTS: The core epitope "FRYEFTAPF" was found to be the most potential one, with 100 % conservancy among all the strains of EBOV. It also interacted with both type I and II major histocompatibility complex molecules and is considered as nonallergenic in nature. Finally, with impressive cumulative population coverage of 99.87 % for the both MHC-I and MHC-II class throughout the world population was found for the proposed epitope. CONCLUSION: To end, the projected peptide gave us a solid stand to propose for vaccine consideration and that might be experimented for its potency in eliciting immunity through humoral and cell mediated immune responses in vitro and in vivo.

13.
Drug Des Devel Ther ; 8: 1139-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25187696

RESUMO

Human coronavirus (HCoV), a member of Coronaviridae family, is the causative agent of upper respiratory tract infections and "atypical pneumonia". Despite severe epidemic outbreaks on several occasions and lack of antiviral drug, not much progress has been made with regard to an epitope-based vaccine designed for HCoV. In this study, a computational approach was adopted to identify a multiepitope vaccine candidate against this virus that could be suitable to trigger a significant immune response. Sequences of the spike proteins were collected from a protein database and analyzed with an in silico tool, to identify the most immunogenic protein. Both T cell immunity and B cell immunity were checked for the peptides to ensure that they had the capacity to induce both humoral and cell-mediated immunity. The peptide sequence from 88-94 amino acids and the sequence KSSTGFVYF were found as the most potential B cell and T cell epitopes, respectively. Furthermore, conservancy analysis was also done using in silico tools and showed a conservancy of 64.29% for all epitopes. The peptide sequence could interact with as many as 16 human leukocyte antigens (HLAs) and showed high cumulative population coverage, ranging from 75.68% to 90.73%. The epitope was further tested for binding against the HLA molecules, using in silico docking techniques, to verify the binding cleft epitope interaction. The allergenicity of the epitopes was also evaluated. This computational study of design of an epitope-based peptide vaccine against HCoVs allows us to determine novel peptide antigen targets in spike proteins on intuitive grounds, albeit the preliminary results thereof require validation by in vitro and in vivo experiments.


Assuntos
Infecções por Coronavirus/prevenção & controle , Coronavirus/isolamento & purificação , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Virais/imunologia , Sequência de Aminoácidos , Simulação por Computador , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Antígenos HLA/imunologia , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Glicoproteína da Espícula de Coronavírus/imunologia
14.
Bioinform Biol Insights ; 8: 65-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24683305

RESUMO

Pyrococcus furiosus is a hyperthermophilic archaea. A hypothetical protein of this archaea, PF0847, was selected for computational analysis. Basic local alignment search tool and multiple sequence alignment (MSA) tool were employed to search for related proteins. Both the secondary and tertiary structure prediction were obtained for further analysis. Three-dimensional model was assessed by PROCHECK and QMEAN6 programs. To get insights about the physical and functional associations of the protein, STRING network analysis was performed. Binding of the SAM (S-adenosyl-l-methionine) ligand with our protein, fetched from an antibiotic-related methyltransferase (PDB code: 3P2K: D), showed high docking energy and suggested the function of the protein as methyltransferase. Finally, we tried to look for a specific function of the proposed methyltransferase, and binding of the geneticin bound to the eubacterial 16S rRNA A-site (PDB code: 1MWL) in the active site of the PF0847 gave us the indication to predict the protein responsible for aminoglycoside antibiotic resistance.

15.
Gene Regul Syst Bio ; 8: 141-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25574135

RESUMO

Alteromonas macleodii AltDE1 is a deep sea protobacteria that is distinct from the surface isolates of the same species. This study was designed to elucidate the biological function of amad1_06475, a hypothetical protein of A. macleodii AltDE1. The 70 residues protein sequence showed considerable homology with cold-shock proteins (CSPs) and RNA chaperones from different organisms. Multiple sequence alignment further supported the presence of conserved csp domain on the protein sequence. The three-dimensional structure of the protein was also determined, and verified by PROCHECK, Verify3D, and QMEAN programs. The predicted structure contained five anti-parallel ß-strands and RNA-binding motifs, which are characteristic features of prokaryotic CSPs. Finally, the binding of a thymidine-rich oligonucleotide and a single uracil molecule in the active site of the protein further strengthens our prediction about the function of amad1_06475 as a CSP and thereby acting as a RNA chaperone. The binding was performed by molecular docking tools and was compared with similar binding of 3PF5 (PDB) and 2HAX (PDB), major CSPs of Bacillus subtilis and Bacillus caldolyticus, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...