Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2304340, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324463

RESUMO

Desmoplasia in pancreatic ductal adenocarcinoma (PDAC) limits the penetration and efficacy of therapies. It has been previously shown that photodynamic priming (PDP) using EGFR targeted photoactivable multi-inhibitor liposomes remediates desmoplasia in PDAC and doubles overall survival. Here, bifunctional PD-L1 immune checkpoint targeted photoactivable liposomes (iTPALs) that mediate both PDP and PD-L1 blockade are presented. iTPALs also improve phototoxicity in PDAC cells and induce immunogenic cell death. PDP using iTPALs reduces collagen density, thereby promoting self-delivery by 5.4-fold in collagen hydrogels, and by 2.4-fold in syngeneic CT1BA5 murine PDAC tumors. PDP also reduces tumor fibroblast content by 39.4%. Importantly, iTPALs also block the PD-1/PD-L1 immune checkpoint more efficiently than free α-PD-L1 antibodies. Only a single sub-curative priming dose using iTPALs provides 54.1% tumor growth inhibition and prolongs overall survival in mice by 42.9%. Overall survival directly correlates with the extent of tumor iTPAL self-delivery following PDP (Pearson's r = 0.670, p = 0.034), while no relationship is found for sham non-specific IgG constructs activated with light. When applied over multiple cycles, as is typical for immune checkpoint therapy, PDP using iTPALs promises to offer durable tumor growth delay and significant survival benefit in PDAC patients, especially when used to promote self-delivery of integrated chemo-immunotherapy regimens.

2.
J Photochem Photobiol B ; 250: 112811, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000171

RESUMO

Desmoplasia in pancreatic ductal adenocarcinoma (PDAC) is characterized by elevated levels of tumor collagen. Desmoplasia restricts drug delivery in PDAC, contributes to treatment resistance, and is associated with poor survival outcomes. We have previously shown that photodynamic therapy (PDT)-based treatment remediates desmoplasia in orthotopic PDAC tumors by reducing second harmonic generation signals from collagen by >90% and by reducing collagen alignment by >103-fold [19]. Remediating desmoplasia correlated with improved survival outcomes in mice. To understand this phenomenon at a fundamental level, it is important to dissect the impact of therapy on collagen subtypes. In this study, we demonstrate that immunofluorescence profiling of collagen subtypes I, II, III and IV in PDAC tumors 72 h following multiple treatment regimens is predictive of long-term outcomes. Treatment regimens include nanoliposomal irinotecan chemotherapy (nal-IRI; akin to ONIVYDE™), a combination of nal-IRI chemotherapy with PDT encapsulated in a single photoactivable multi-inhibitor liposome (PMIL) and an EGFR-targeted PMIL construct (TPMIL). Results show that the relative tumor content of collagen I, II and III was inversely correlated with overall survival (P ≤ 0.0013, P ≤ 0.0001, P ≤ 0.0011, respectively), while, surprisingly, the relative tumor content of collagen IV was directly correlated with overall survival (P ≤ 0.0001). Similar relationships were observed between the relative tumor content of collagen subtypes and the residual tumor volume at day 88 following treatment. Considering that the relationship between collagen subtypes and treatment outcomes is observed across multiple treatment regimens, immunofluorescence profiling at 72 h following treatment appears to be predictive of tumor growth inhibition and survival in PDAC. Early immunofluorescence collagen subtype profiling may therefore aid in treatment personalization and may inform the dosimetry and scheduling of combination regimens for PDAC, such as chemotherapy and emerging PDT-based combinations, to maximize patient survival benefit.


Assuntos
Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Resultado do Tratamento , Colágeno , Colágeno Tipo I , Imunofluorescência , Lipossomos
3.
Photochem Photobiol ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818742

RESUMO

Photodynamic priming (PDP) leverages the photobiological effects of subtherapeutic photodynamic therapy (PDT) regimens to modulate the tumor vasculature and stroma. PDP also sensitizes tumors to secondary therapies, such as immunotherapy by inducing a cascade of molecular events, including immunogenic cell death (ICD). We and others have shown that PDP improves the delivery of antibodies, among other theranostic agents. However, it is not known whether a single PDP protocol is capable of both inducing ICD in vivo and augmenting the delivery of immune checkpoint inhibitors. In this rapid communication, we show for the first time that a single PDP protocol using liposomal benzoporphyrin derivative (Lipo-BPD, 0.25 mg/kg) with 690 nm light (75 J/cm2 , 100 mW/cm2 ) simultaneously doubles the delivery of ⍺-PD-L1 antibodies in murine AT-84 head and neck tumors and induces ICD in vivo. ICD was observed as a 3-11 fold increase in tumor cell exposure of damage-associated molecular patterns (Calreticulin, HMGB1, and HSP70). These findings suggest that this single, highly translatable PDP protocol using clinically relevant Lipo-BPD holds potential for improving immunotherapy outcomes in head and neck cancer. It can do so by simultaneously overcoming physical barriers to the delivery of immune checkpoint inhibitors, and biochemical barriers that contribute to immunosuppression.

4.
Phys Med Biol ; 68(15)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37369225

RESUMO

Tumors become inoperable due to their size or location, making neoadjuvant chemotherapy the primary treatment. However, target tissue accumulation of anticancer agents is limited by the physical barriers of the tumor microenvironment. Low-intensity focused ultrasound (FUS) in combination with microbubble (MB) contrast agents can increase microvascular permeability and improve drug delivery to the target tissue after systemic administration. The goal of this research was to investigate image-guided FUS-mediated molecular delivery in volume space. Three-dimensional (3-D) FUS therapy functionality was implemented on a programmable ultrasound scanner (Vantage 256, Verasonics Inc.) equipped with a linear array for image guidance and a 128-element therapy transducer (HIFUPlex-06, Sonic Concepts). FUS treatment was performed on breast cancer-bearing female mice (N= 25). Animals were randomly divided into three groups, namely, 3-D FUS therapy, two-dimensional (2-D) FUS therapy, or sham (control) therapy. Immediately prior to the application of FUS therapy, animals received a slow bolus injection of MBs (Definity, Lantheus Medical Imaging Inc.) and near-infrared dye (IR-780, surrogate drug) for optical reporting and quantification of molecular delivery. Dye accumulation was monitored viain vivooptical imaging at 0, 1, 24, and 48 h (Pearl Trilogy, LI-COR). Following the 48 h time point, animals were humanely euthanized and tumors excised forex vivoanalyzes. Optical imaging results revealed that 3-D FUS therapy improved delivery of the IR-780 dye by 66.4% and 168.1% at 48 h compared to 2-D FUS (p= 0.18) and sham (p= 0.047) therapeutic strategies, respectively.Ex vivoanalysis revealed similar trends. Overall, 3-D FUS therapy can improve accumulation of a surrogate drug throughout the entire target tumor burden after systemic administration.


Assuntos
Antineoplásicos , Neoplasias , Animais , Feminino , Camundongos , Barreira Hematoencefálica , Meios de Contraste , Sistemas de Liberação de Medicamentos/métodos , Microbolhas , Modelos Animais , Neoplasias/tratamento farmacológico , Microambiente Tumoral
5.
Photochem Photobiol ; 99(2): 751-760, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36481983

RESUMO

Osmium (Os) based photosensitizers (PSs) are a unique class of nontetrapyrrolic metal-containing PSs that absorb red light. We recently reported a highly potent Os(II) PS, rac-[Os(phen)2 (IP-4T)](Cl)2 , referred to as ML18J03 herein, with light EC50 values as low as 20 pm. ML18J03 also exhibits low dark toxicity and submicromolar light EC50 values in hypoxia in some cell lines. However, owing to its longer oligothiophene chain, ML18J03 is not completely water soluble and forms 1-2 µm sized aggregates in PBS containing 1% DMSO. This aggregation causes variability in PDT efficacy between assays and thus unreliable and irreproducible reports of in vitro activity. To that end, we utilized PEG-modified DPPC liposomes (138 nm diameter) and DSPE-mPEG2000 micelles (10.2 nm diameter) as lipid nanoformulation vehicles to mitigate aggregation of ML18J03 and found that the spectroscopic properties important to biological activity were maintained or improved. Importantly, the lipid formulations decreased the interassay variance between the EC50 values by almost 20-fold, with respect to the unformulated ML18J03 when using broadband visible light excitation (P = 0.0276). Herein, lipid formulations are presented as reliable platforms for more accurate in vitro photocytotoxicity quantification for PSs prone to aggregation (such as ML18J03) and will be useful for assessing their in vivo PDT effects.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Osmio , Luz , Lipossomos/química , Lipídeos
6.
Photochem Photobiol ; 99(2): 448-468, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36117466

RESUMO

Ovarian cancer is the most lethal gynecologic malignancy with a stubborn mortality rate of ~65%. The persistent failure of multiline chemotherapy, and significant tumor heterogeneity, has made it challenging to improve outcomes. A target of increasing interest is the mitochondrion because of its essential role in critical cellular functions, and the significance of metabolic adaptation in chemoresistance. This review describes mitochondrial processes, including metabolic reprogramming, mitochondrial transfer and mitochondrial dynamics in ovarian cancer progression and chemoresistance. The effect of malignant ascites, or excess peritoneal fluid, on mitochondrial function is discussed. The role of photodynamic therapy (PDT) in overcoming mitochondria-mediated resistance is presented. PDT, a photochemistry-based modality, involves the light-based activation of a photosensitizer leading to the production of short-lived reactive molecular species and spatiotemporally confined photodamage to nearby organelles and biological targets. The consequential effects range from subcytotoxic priming of target cells for increased sensitivity to subsequent treatments, such as chemotherapy, to direct cell killing. This review discusses how PDT-based approaches can address key limitations of current treatments. Specifically, an overview of the mechanisms by which PDT alters mitochondrial function, and a summary of preclinical advancements and clinical PDT experience in ovarian cancer are provided.


Assuntos
Neoplasias Ovarianas , Fotoquimioterapia , Feminino , Humanos , Resistencia a Medicamentos Antineoplásicos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Mitocôndrias/metabolismo , Linhagem Celular Tumoral
7.
Artigo em Inglês | MEDLINE | ID: mdl-38476292

RESUMO

Polarized light interactions with biological tissues can reveal information regarding tissue structure, while spectral characteristics are closely related to tissue composition. An integration of both modalities in a compact system could better assist tissue assessment. This study aims to develop a polarized hyperspectral imaging (PHSI) system that fulfills both linearly and circularly polarized hyperspectral imaging for in vivo and ex vivo applications. The system is comprised of a white LED, two linear polarizers, two liquid crystal variable retarders (LCVRs), and a hyperspectral snapshot camera. The system was calibrated to compute the full Stokes polarimetry. For tissue differentiation, fresh ex vivo mouse tissue specimens from kidney, liver, spleen, muscle, lung, and salivary gland of mice were imaged. The spectra of three features, named degree of polarization (DOP), degree of linear polarization (DOLP), and degree of circular polarization (DOCP), were generated. A k-nearest neighbor (k-NN) classifier was trained with multi-class spectra and 5-fold cross validation. It was found that DOP better differentiates tissue with an average accuracy of 0.87. Additionally, support vector machine (SVM) classifiers were trained to differentiate between each two of the organs, and it was determined that DOLP better identified kidney, liver, and spleen, whereas DOCP better identified muscle and lung tissues. Then, the setup was employed to image in vivo human fingers with and without a blood occlusion to qualitatively estimate oxygen saturation. Preliminary results demonstrate that both DOLP and DOCP reveal a distinction of oxygen saturation states. These results demonstrate the feasibility of the PHSI system for distinguishing between optical properties of tissues, which has the potential to reveal disease-related information for diverse medical applications.

8.
Pharmaceutics ; 14(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36365244

RESUMO

Osmium (Os)-based photosensitizers (PSs) exhibit unique broad, red-shifted absorption, favoring PDT activity at greater tissue depths. We recently reported on a potent Os(II) PS, rac-[Os(phen)2(IP-4T)](Cl)2 (ML18J03) with submicromolar hypoxia activity. ML18J03 exhibits a low luminescence quantum yield of 9.8 × 10-5 in PBS, which limits its capacity for in vivo luminescence imaging. We recently showed that formulating ML18J03 into 10.2 nm DSPE-mPEG2000 micelles (Mic-ML18J03) increases its luminescence quantum yield by two orders of magnitude. Here, we demonstrate that Mic-ML18J03 exhibits 47-fold improved accumulative luminescence signals in orthotopic AT-84 head and neck tumors. We show, for the first time, that micellar formulation provides up to 11.7-fold tumor selectivity for ML18J03. Furthermore, Mic-ML18J03 does not experience the concentration-dependent quenching observed with unformulated ML18J03 in PBS, and formulation reduces spectral shifting of the emission maxima during PDT (variance = 6.5 and 27.3, respectively). The Mic-ML18J03 formulation also increases the production of reactive molecular species 2-3-fold. These findings demonstrate that micellar formulation is a versatile and effective approach to enable in vivo luminescence imaging options for an otherwise quenched, yet promising, PS.

9.
Front Oncol ; 12: 853660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837101

RESUMO

Fluorescence image-guided surgery (IGS) using antibody conjugates of the fluorophore IRDye800CW have revolutionized the surgical debulking of tumors. Cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody, conjugated to IRDye800CW (Cet-IRDye800) is the first molecular targeted antibody probe to be used for IGS in head and neck cancer patients. In addition to surgical debulking, Cetuximab-targeted photodynamic therapy (photoimmunotherapy; PIT) is emerging in the clinic as a powerful modality for head and neck tumor photodestruction. A plethora of other photoactivable agents are also in clinical trials for photodynamic-based therapies of head and neck cancer. Considering the vascular and stromal modulating effects of sub-therapeutic photodynamic therapy, namely photodynamic priming (PDP), this study explores the potential synergy between PDP and IGS for a novel photodynamic image-guided surgery (P-IGS) strategy. To the best of our knowledge, this is the first demonstration that PDP of the tumor microenvironment can augment the tumor delivery of full-length antibodies, namely Cet-IRDye800. In this study, we demonstrate a proof-of-concept that PDP primes orthotopic FaDu human head and neck tumors in mice for P-IGS by increasing the delivery of Cet-IRDye800 by up to 138.6%, by expediting its interstitial accumulation by 10.5-fold, and by increasing its fractional tumor coverage by 49.5% at 1 h following Cet-IRDye800 administration. Importantly, PDP improves the diagnostic accuracy of tumor detection by up to 264.2% with respect to vicinal salivary glands at 1 h. As such, PDP provides a time-to-surgery benefit by reducing the time to plateau 10-fold from 25.7 h to 2.5 h. We therefore propose that a pre-operative PDP regimen can expedite and augment the accuracy of IGS-mediated surgical debulking of head and neck tumors and reduce the time-to-IGS. Furthermore, this P-IGS regimen, can also enable a forward-looking post-operative protocol for the photodestruction of unresectable microscopic disease in the surgical bed. Beyond this scope, the role of PDP in the homogenous delivery of diagnostic, theranostic and therapeutic antibodies in solid tumors is of considerable significance to the wider community.

10.
Adv Sci (Weinh) ; 9(24): e2104594, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748165

RESUMO

Desmoplasia is characteristic of pancreatic ductal adenocarcinoma (PDAC), which exhibits 5-year survival rates of 3%. Desmoplasia presents physical and biochemical barriers that contribute to treatment resistance, yet depleting the stroma alone is unsuccessful and even detrimental to patient outcomes. This study is the first demonstration of targeted photoactivable multi-inhibitor liposomes (TPMILs) that induce both photodynamic and chemotherapeutic tumor insult, while simultaneously remediating desmoplasia in orthotopic PDAC. TPMILs targeted with cetuximab (anti-EGFR mAb) contain lipidated benzoporphyrin derivative (BPD-PC) photosensitizer and irinotecan. The desmoplastic tumors comprise human PDAC cells and patient-derived cancer-associated fibroblasts. Upon photoactivation, the TPMILs induce 90% tumor growth inhibition at only 8.1% of the patient equivalent dose of nanoliposomal irinotecan (nal-IRI). Without EGFR targeting, PMIL photoactivation is ineffective. TPMIL photoactivation is also sixfold more effective at inhibiting tumor growth than a cocktail of Visudyne-photodynamic therapy (PDT) and nal-IRI, and also doubles survival and extends progression-free survival by greater than fivefold. Second harmonic generation imaging reveals that TPMIL photoactivation reduces collagen density by >90% and increases collagen nonalignment by >103 -fold. Collagen nonalignment correlates with a reduction in tumor burden and survival. This single-construct phototoxic, chemotherapeutic, and desmoplasia-remediating regimen offers unprecedented opportunities to substantially extend survival in patients with otherwise dismal prognoses.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Receptores ErbB/uso terapêutico , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Lipossomos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pancreáticas
11.
Photodiagnosis Photodyn Ther ; 39: 102923, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35605924

RESUMO

While photodynamic therapy (PDT) is effective for the eradication of select neoplasia and certain other pathologic conditions, it has yet to achieve wide acceptance in clinical medicine. A variety of factors contribute to this situation including relations with the pharmaceutical industry that have often been problematic. Some current studies relating to photodynamic effects are 'phenomenological', i.e., they describe phenomena that only reiterate what is already known. The net result has been a tendency of granting agencies to become disillusioned with support for PDT research. This report is intended to provide some thoughts on current research efforts that improve clinical relevance and those that do not.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico
12.
Methods Mol Biol ; 2451: 127-149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505015

RESUMO

The most facile, reproducible, and robust in vivo models for evaluating the anticancer efficacy of photodynamic therapy (PDT) are subcutaneous xenograft models of human tumors. The accessibility and practicality of light irradiation protocols for treating subcutaneous xenograft models also increase their value as relatively rapid tools to expedite the testing of novel photosensitizers, respective formulations, and treatment regimens for PDT. This chapter summarizes the methods used in the literature to prepare various types of subcutaneous xenograft models of human cancers and syngeneic models to explore the role of PDT in immuno-oncology. This chapter also summarizes the PDT treatment protocols tested on the subcutaneous models, and the procedures used to evaluate the efficacy at the molecular, macromolecular, and host organism levels.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
13.
Methods Mol Biol ; 2451: 163-173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505017

RESUMO

A hallmark of pancreatic ductal adenocarcinoma (PDAC) is its poor prognosis that stems from a marked resistance to therapy, an invasive nature, and a high metastatic potential. Photodynamic therapy (PDT) is a promising modality for effectively managing PDAC both preclinically and clinically. While clinical trials of PDT for PDAC are still in their early stages, a plethora of elegant preclinical studies are supporting the translation and clinical adoption of PDT-based treatment regimens, many of which leverage orthotopic preclinical models of PDAC. Given the aggressiveness of the disease that is largely dependent on the localization of PDAC tumors, it is imperative that preclinical models used to evaluate PDT-based treatment regimens recapitulate elements of the natural pathogenesis in order to design treatment regimens tailored to PDAC with the highest potential for clinical success. In light of the importance of clinically relevant models of PDAC, this chapter details and discusses the methodologies developed over the last three decades to leverage orthotopic PDAC models in order to evaluate PDT-based treatment regimens. The shortcomings of these are also discussed, in addition to the future directions that the field is headed to establish the most relevant orthotopic models of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Fotoquimioterapia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
14.
Mol Pharm ; 19(7): 2549-2563, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35583476

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by increased levels of desmoplasia that contribute to reduced drug delivery and poor treatment outcomes. In PDAC, the stromal content can account for up to 90% of the total tumor volume. The complex interplay between stromal components, including pancreatic cancer-associated fibroblasts (PCAFs), and PDAC cells in the tumor microenvironment has a significant impact on the prognoses and thus needs to be recapitulated in vitro when evaluating various treatment strategies. This study is a systematic evaluation of photodynamic therapy (PDT) in 3D heterotypic coculture models of PDAC with varying ratios of patient-derived PCAFs that simulate heterogeneous PDAC tumors with increasing stromal content. The efficacy of antibody-targeted PDT (photoimmunotherapy; PIT) using cetuximab (a clinically approved anti-EGFR antibody) photoimmunoconjugates (PICs) of a benzoporphyrin derivative (BPD) is contrasted with that of liposomal BPD (Visudyne), which is currently in clinical trials for PDT of PDAC. We demonstrate that both Visudyne-PDT and PIT were effective in heterotypic PDAC 3D spheroids with a low stromal content. However, as the stromal content increases above 50% in the 3D spheroids, the efficacy of Visudyne-PDT is reduced by up to 10-fold, while PIT retains its efficacy. PIT was found to be 10-, 19-, and 14-fold more phototoxic in spheroids with 50, 75, and 90% PCAFs, respectively, as compared to Visudyne-PDT. This marked difference in efficacy is attributed to the ability of PICs to penetrate and distribute homogeneously within spheroids with a higher stromal content and the mechanistically different modes of action of the two formulations. This study thus demonstrates how the stromal content in PDAC spheroids directly impacts their responsiveness to PDT and proposes PIT to be a highly suited treatment option for desmoplastic tumors with particularly high degrees of stromal content.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Fotoquimioterapia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Verteporfina , Neoplasias Pancreáticas
15.
Cancers (Basel) ; 14(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35454910

RESUMO

With the continued development of nanomaterials over the past two decades, specialized photonanomedicines (light-activable nanomedicines, PNMs) have evolved to become excitable by alternative energy sources that typically penetrate tissue deeper than visible light. These sources include electromagnetic radiation lying outside the visible near-infrared spectrum, high energy particles, and acoustic waves, amongst others. Various direct activation mechanisms have leveraged unique facets of specialized nanomaterials, such as upconversion, scintillation, and radiosensitization, as well as several others, in order to activate PNMs. Other indirect activation mechanisms have leveraged the effect of the interaction of deeply penetrating energy sources with tissue in order to activate proximal PNMs. These indirect mechanisms include sonoluminescence and Cerenkov radiation. Such direct and indirect deep-tissue activation has been explored extensively in the preclinical setting to facilitate deep-tissue anticancer photodynamic therapy (PDT); however, clinical translation of these approaches is yet to be explored. This review provides a summary of the state of the art in deep-tissue excitation of PNMs and explores the translatability of such excitation mechanisms towards their clinical adoption. A special emphasis is placed on how current clinical instrumentation can be repurposed to achieve deep-tissue PDT with the mechanisms discussed in this review, thereby further expediting the translation of these highly promising strategies.

16.
Pharmaceutics ; 13(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070233

RESUMO

The emergence of biomimetic nanotechnology has seen an exponential rise over the past decade with applications in regenerative medicine, immunotherapy and drug delivery. In the context of nanomedicines activated by near infrared (NIR) photodynamic processes (photonanomedicines; PNMs), biomimetic nanotechnology is pushing the boundaries of activatable tumor targeted nanoscale drug delivery systems. This review discusses how, by harnessing a unique collective of biological processes critical to targeting of solid tumors, biomimetic PNMs (bPNMs) can impart tumor cell specific and tumor selective photodynamic therapy-based combination regimens. Through molecular immune evasion and self-recognition, bPNMs can confer both tumor selectivity (preferential bulk tumor accumulation) and tumor specificity (discrete molecular affinity for cancer cells), respectively. They do so in a manner that is akin, yet arguably superior, to synthetic molecular-targeted PNMs. A particular emphasis is made on how bPNMs can be engineered to circumvent tumor cell heterogeneity, which is considered the Achilles' heel of molecular targeted therapeutics. Forward-looking propositions are also presented on how patient tumor heterogeneity can ultimately be recapitulated to fabricate patient-specific, heterogeneity-targeting bPNMs.

17.
Nano Res ; 14(5): 1344-1354, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33717420

RESUMO

The significance and ability for receptor targeted nanoliposomes (tNLs) to bind to their molecular targets in solid tumors in vivo has been questioned, particularly as the efficiency of their tumor accumulation and selectivity is not always predictive of their efficacy or molecular specificity. This study presents, for the first time, in situ NIR molecular imaging-based quantitation of the in vivo specificity of tNLs for their target receptors, as opposed to tumor selectivity, which includes influences of enhanced tumor permeability and retention. Results show that neither tumor delivery nor selectivity (tumor-to-normal ratio) of cetuximab and IRDye conjugated tNLs correlate with EGFR expression in U251, U87 and 9L tumors, and in fact underrepresent their imaging-derived molecular specificity by up to 94.2%. Conversely, their in vivo specificity, which we quantify as the concentration of tNL-reported tumor EGFR provided by NIR molecular imaging, correlates positively with EGFR expression levels in vitro and ex vivo (Pearson's r= 0.92 and 0.96, respectively). This study provides a unique opportunity to address the problematic disconnect between tNL synthesis and in vivo specificity. The findings encourage their continued adoption as platforms for precision medicine, and facilitates intelligent synthesis and patient customization in order to improve safety profiles and therapeutic outcomes.

18.
Nano Today ; 362021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552231

RESUMO

Near infrared (NIR) photodynamic activation is playing increasingly critical roles in cutting-edge anti-cancer nanomedicines, which include spatiotemporal control over induction of therapy, photodynamic priming, and phototriggered immunotherapy. Molecular targeted photonanomedicines (mt-PNMs) are tumor-specific nanoscale drug delivery systems, which capitalize on the unparalleled spatio-temporal precision of NIR photodynamic activation to augment the accuracy of tumor tissue treatment. mt-PNMs are emerging as a paradigm approach for the targeted treatment of solid tumors, yet remain highly complex and multifaceted. While ligand targeted nanomedicines in general suffer from interdependent challenges in biophysics, surface chemistry and nanotechnology, mt-PNMs provide distinct opportunities to synergistically potentiate the effects of ligand targeting. This review provides what we believe to be a much-need demarcation between the processes involved in tumor specificity (biomolecular recognition events) and tumor selectivity (preferential tumor accumulation) of ligand targeted nanomedicines, such as mt-PNMs, and elaborate on what NIR photodynamic activation has to offer. We discuss the interplay between both tumor specificity and tumor selectivity and the degree to which both may play central roles in cutting-edge NIR photoactivable nanotechnologies. A special emphasis is made on NIR photoactivable biomimetic nanotechnologies that capitalize on both specificity and selectivity phenomena to augment the safety and efficacy of photodynamic anti-tumor regimens.

19.
Nanophotonics ; 10(12): 3169-3185, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35433177

RESUMO

Near-infrared (NIR)-activable liposomes containing photosensitizer (PS)-lipid conjugates are emerging as tunable, high-payload, and tumor-selective platforms for photodynamic therapy (PDT)-based theranostics. To date, the impact that the membrane composition of a NIR-activable liposome (the chemical nature and subsequent conformation of PS-lipid conjugates) has on their in vitro and in vivo functionality has not been fully investigated. While their chemical nature is critical, the resultant physical conformation dictates their interactions with the immediate biological environments. Here, we evaluate NIR-activable liposomes containing lipid conjugates of the clinically-used PSs benzoporphyrin derivative (BPD; hydrophobic, membrane-inserting conformation) or IRDye 700DX (hydrophilic, membrane-protruding conformation) and demonstrate that membrane composition is critical for their function as tumor-selective PDT-based platforms. The PS-lipid conformations were primarily dictated by the varying solubilities of the two PSs and assisted by their lipid conjugation sites. Conformation was further validated by photophysical analysis and computational predictions of PS membrane partitioning (topological polar surface area [tPSA], calculated octanol/water partition [cLogP], and apparent biomembrane permeability coefficient [Papp]). Results show that the membrane-protruding lipo-IRDye700DX exhibits 5-fold more efficient photodynamic generation of reactive molecular species (RMS), 12-fold expedited phototriggered burst release of entrap-ped agents, and 15-fold brighter fluorescence intensity as compared to the membrane-inserting lipo-BPD-PC (phosphatidylcholine conjugate). Although the membrane-inserting lipo-BPD-PC exhibits less efficient photo-dynamic generation of RMS, it allows for more sustained phototriggered release, 10-fold greater FaDu cancer cell phototoxicity, and 7.16-fold higher tumor-selective delivery in orthotopic mouse FaDu head and neck tumors. These critical insights pave the path for the rational design of emerging NIR-activable liposomes, whereby functional consequences of membrane composition can be tailored toward a specific therapeutic purpose.

20.
J Clin Med ; 9(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32726945

RESUMO

Receptor heterogeneity in cancer is a major limitation of molecular targeting for cancer therapeutics. Single-receptor-targeted treatment exerts selection pressures that result in treatment escape for low-receptor-expressing tumor subpopulations. To overcome this potential for heterogeneity-driven resistance to molecular targeted photodynamic therapy (PDT), we present for the first time a triple-receptor-targeted photoimmuno-nanoconjugate (TR-PIN) platform. TR-PIN functionalization with cetuximab, holo-transferrin, and trastuzumab conferred specificity for epidermal growth factor receptor (EGFR), transferrin receptor (TfR), and human epidermal growth factor receptor 2 (HER-2), respectively. The TR-PINs exhibited up to a 24-fold improvement in cancer cell binding compared with EGFR-specific cetuximab-targeted PINs (Cet-PINs) in low-EGFR-expressing cell lines. Photodestruction using TR-PINs was significantly higher than the monotargeted Cet-PINs in heterocellular 3D in vitro models of heterogeneous pancreatic ductal adenocarcinoma (PDAC; MIA PaCa-2 cells) and heterogeneous head and neck squamous cell carcinoma (HNSCC, SCC9 cells) containing low-EGFR-expressing T47D (high TfR) or SKOV-3 (high HER-2) cells. Through their capacity for multiple tumor target recognition, TR-PINs can serve as a unique and amenable platform for the effective photodynamic eradication of diverse tumor subpopulations in heterogeneous cancers to mitigate escape for more complete and durable treatment responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...