Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(8): 7190-7202, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349743

RESUMO

Light-triggered molecular switches are extensively researched for their applications in medicine, chemistry and material science and, if combined, particularly for their use in multifunctional smart materials, for which orthogonally, i.e. individually, addressable photoswitches are needed. In such a multifunctional mixture, the switching properties, efficiencies and the overall performance may be impaired by undesired mutual dependences of the photoswitches on each other. Within this study, we compare the performance of the pure photoswitches, namely an azobenzene derivative (Azo) and a donor-acceptor Stenhouse adduct (DASA), with the switching properties of their mixture using time-resolved temperature-dependent UV/VIS absorption spectroscopy, time-resolved IR absorption spectroscopy at room temperature and quantum mechanical calculations to determine effective cross sections, switching kinetics as well as activation energies of thermally induced steps. We find slightly improved effective cross sections, percentages of switched molecules and no increased activation barriers of the equimolar mixture compared to the single compounds. Thus, the studied mixture Azo + DASA is very promising for future applications in multifunctional smart materials.

2.
Angew Chem Int Ed Engl ; 63(10): e202314112, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38059778

RESUMO

Compounds with multiple photoswitching units are appealing for complex photochemical control of molecular materials and nanostructures. Herein, we synthesized novel meta- and para- connected (related to the nitrogen of the indoline) azobenzene-spiropyran dyads, in which the central benzene unit is shared by both switches. We investigated their photochemistry using static and time-resolved transient absorption spectroscopy as well as quantum chemical calculations. In the meta-compound, the individual components are photochemically decoupled due to the meta-pattern. In the para-compound the spiro-connectivity leads to a bifunctional photoswitchable system with a red-shifted absorption. The azobenzene and the spiropyran can thus be addressed and switched independently by light of appropriate wavelength. Through the different connectivity patterns two different orthogonally photoswitchable systems have been obtained which are promising candidates for complex applications of light control.

3.
Angew Chem Int Ed Engl ; 62(15): e202300785, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36779363

RESUMO

The incorporation of heteroatoms into hydrocarbon compounds greatly expands the chemical space of molecular materials. In this context, B-N doping takes a center stage due to its isosterism with a C=C-bond. Herein, we present a new and modular synthetic concept to access novel diazadiborabenzo[b]triphenylenes 7 a-h using the B-N doped biradical 16 as intermediate. Characterization of the photophysical properties revealed the emission spectra of the diazadibora benzo[b]triphenylenes 7 a-h can conveniently be tuned by small changes of the substitution on the boron-atom. All of the diazadibora compounds show a short life-time phosphorescence. Additionally, we were able to rationalize the excited-state relaxation of the diazadiboraacene 7 a via intersystem crossing by quantum chemical calculations. The new synthetic strategy provides an elegant route to various novel B-N doped acenes with great potential for applications in molecular materials.

4.
ChemSusChem ; 15(18): e202200958, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35762102

RESUMO

Molecular solar thermal (MOST) systems combine solar energy conversion, storage, and release in simple one-photon one-molecule processes. Here, we address the electrochemically triggered energy release from an azothiophene-based MOST system by photoelectrochemical infrared reflection absorption spectroscopy (PEC-IRRAS) and density functional theory (DFT). Specifically, the electrochemically triggered back-reaction from the energy rich (Z)-3-cyanophenylazothiophene to its energy lean (E)-isomer using highly oriented pyrolytic graphite (HOPG) as the working electrode was studied. Theory predicts that two reaction channels are accessible, an oxidative one (hole-catalyzed) and a reductive one (electron-catalyzed). Experimentally it was found that the photo-isomer decomposes during hole-catalyzed energy release. Electrochemically triggered back-conversion was possible, however, through the electron-catalyzed reaction channel. The reaction rate could be tuned by the electrode potential within two orders of magnitude. It was shown that the MOST system withstands 100 conversion cycles without detectable decomposition of the photoswitch. After 100 cycles, the photochemical conversion was still quantitative and the electrochemically triggered back-reaction reached 94 % of the original conversion level.

5.
Chemistry ; 28(38): e202200972, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35499252

RESUMO

Herein, we report a series of azobenzene-substituted triptycenes. In their design, these switching units were placed in close proximity, but electronically separated by a sp3 center. The azobenzene switches were prepared by Baeyer-Mills coupling as key step. The isomerization behavior was investigated by 1 H NMR spectroscopy, UV/Vis spectroscopy, and HPLC. It was shown that all azobenzene moieties are efficiently switchable. Despite the geometric decoupling of the chromophores, computational studies revealed excitonic coupling effects between the individual azobenzene units depending on the connectivity pattern due to the different transition dipole moments of the π→π* excitations. Transition probabilities for those excitations are slightly altered, which is also revealed in their absorption spectra. These insights provide new design parameters for combining multiple photoswitches in one molecule, which have high potential as energy or information storage systems, or, among others, in molecular machines and supramolecular chemistry.


Assuntos
Antracenos , Compostos Azo , Compostos Azo/química , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...